M. Rouhier

Chemistry 401: Food Chemistry

Course Description

In this course we will examine the chemistry of food from farm to fork. The discussion- and literature-based format is designed to probe, perhaps the oldest area of applied chemistry, cooking. We will explore ideas such as phase changes, extractions, denaturation, and chemical reactivity in such a way that you can alter a cooking/baking phase of reaction and confidently predict the outcome.

What To Expect

From the course – to be surprised, challenged, and informed about the chemistry of food. Students can expect to improve their primary literature reading and interpretation skills, apply and extend their chemical knowledge to the area of food composition and transformation (cooking/baking), and enhance their written and oral

communication skills. One or two class periods will be spent on each topic and we will discuss and analyze literature that structures the area of study.

From the instructor – to treat each person with respect, be enthusiastic about the subject, arrive to class on time and prepared, return graded and assessed items in a timely manner, reply to emails in a timely manner (however, I will not reply after 9 PM), and be available outside of class for questions or further discussion.

Of the students – to respect others, be on time (when arriving to class, turning in assignments, etc.), be prepared for class (have read related course material **before** class, be alert, etc.), and participate during class (participate in small group activities, answer/ask questions, etc.).

Instructor and Course Resources

Instructor:	Prof. Matthew Rouhier ("Roo-yer")
Email:	rouhierm@kenyon.edu
Office:	208 Tomisch Hall
Office Hours:	M (4-5 pm), T (1-2 pm), W (3-4 pm), or by appointment
Class location:	Tomsich 206
Class time:	9:40 -11:00 AM; Tuesday & Thursday
Suggested materials:	On Food and Cooking: The Science and Lore of the Kitchen
	Revised Ed. (2004) by Harold McGee
Course websites:	moodle.kenyon.edu (CHEM 401.00)

CHEM 401.00 FA19

Course Policies

Attendance – Since this is a seminar course, your presence and participation in class discussions is necessary. If you are unable to attend a class, please notify the instructor by email as soon as possible. More than three unexcused absences will result in a grade reduction by 1/3 (e.g. from B+ to B). Note: **only the Dean of Students offers an Excused Absence** (see Course of Study 2019-2020 for details).

"Absences for reasons of illness are not ordinarily excused: only when a student is declared by the College physician to be infirm (in a hospital or at home) will a health report be sent from the Health and Counseling Center to the dean of students, giving the days when each patient is judged infirm and recommending that the student's class absences be excused. When released from confinement, the student is expected to resume regular required attendances unless otherwise advised."

Athletics and Extracurricular Activities – If your participation in athletics or extracurricular activities conflicts with a class, scheduled exam time, or project due date; please let me know as soon as possible, at least two weeks in advance. Typically, you will be expected to complete your work **before** (not after) the deadline for the rest of the class.

Accommodations – A student with a disability who thinks he or she may need an accommodation to access a campus program, activity, or service should contact **Erin Salva**, **in Student Accessibility and Support Services** (SASS) at <u>salvae@kenyon.edu</u> to discuss specific needs. Advanced notice is required to review documentation, evaluate requests and provide notice or arrangements for any accommodation.

Academic Honesty – At Kenyon we expect all students, at all times, to submit work that represents the highest standards of academic integrity. It is the responsibility of each student to learn and practice the proper ways of documenting and acknowledging those whose ideas and words they have drawn upon (see **Academic Honesty and Questions of Plagiarism in the Course Catalog**). Ignorance and carelessness are not excuses for academic dishonesty. If you are uncertain about the expectations for this class, please ask for clarification. Note: this class encourages collaborative work; however your work must still be your own.

Title IX – As a faculty member, I am deeply invested in the well-being of each student I teach. I am here to assist you with your work in this course. If you come to me with other non-course-related concerns, I will do my best to help. It is important for you to know that all faculty members are mandated reporters of any incidents of harassment, discrimination, and intimate partner violence and stalking. Meaning, I must report any such discussion to the Civil Right/Title IX coordinator. I cannot keep information involving sexual harassment, sexual misconduct, interpersonal violence, or any other form of harassment or discrimination based on a protected characteristic, confidential. The Health and Counseling Center, the College chaplains, and the staff at New Directions Abuse Shelter and Rape Crisis Center are confidential resources.

Late work – Late work will be accepted with a penalty of 10% per 24 hours late (including weekends). Work more than 5 days late will not be accepted.

Technology use – You may, and often will, use laptops or similar devices during class. Please refrain from using it to email, message, play games, or any other activity unrelated to class. If your use of technology is a distraction to the instructor or others in the class, this privilege may be revoked. Cell phones are not to be used during class. Please have them turned off or set to silent.

Course Details

Course Objective - Understand the chemical reactions in baking/cooking such that one can predict the likely outcome of a baking/cooking reaction.

How this is accomplished?

- 1. We will examine a series of "simple concepts" that lead to success in the kitchen (according to America's Test Kitchen, Cook's Illustrated, or myself) by re-defining the statement in the language of chemistry (chemical verbiage) and applying chemical understanding to the phenomenon described.
- 2. We will examine literature that relates to the concepts and develop the skills needed to critically analyze primary sources.

How is progress measured?

- 1. Re-defining statements accurately to reflect the chemical phenomenon that underpin them.
- 2. Effectively predict the outcome of baking/cooking reactions
- 3. Successfully articulate the strong and weak attributes of primary literature and experimental methods utilized.

What are the measurement items and how are they weighted?

Outside regular class meetings	Concept Rewrite Chemical Concept Link Response-To-Reading	10% 10% 10%
During regular class meetings	Evaluations of Discussions Student-Led Discussions Participation Oral Final Exam	10% 20% 20% 20%

CHEM 401.00 FA19

Concept Rewrite & Chemical Concept Link – Cook's Illustrated has a series of simple concepts that are written in lay-language. We will rewrite these concepts using the chemical terms that Cook's Illustrated has simplified. In addition, we will link the food transformation (macroscale phenomenon) to the underlying chemical properties. Concept Rewrites and Chemical Concept Links will be due on the day the topic and will be submitted using Moodle (linked to a Google Form).

Response-To-Readings (RTR) – In preparation for each class, students will be asked to write a short response on one or more of the upcoming assigned readings, or generate the conclusion(s) of a study based on the presented results. It is intended to help guide your reading as well as provide the class with initial discussion points. It is unlikely that these assignments will ever exceed one page. Response papers will be due on the day the topic or article is covered in class and will be submitted using Moodle.

During regular class time:

Student-Led Discussions & Evaluations – Pairs of students will be presenting on weekly topics. The pair will select at least two pieces of primary literature related to that week's topic. They will discuss those articles with the professor at least two weeks in advance for guidance and approval. They will then assign the Response-To-Readings (RTR) assignment by emailing the questions to Dr. Rouhier one week prior to presenting. The students will then lead the class to discuss those articles. Each student will present two times, with a different partner for each presentation.

Every student will fill out an evaluation for the student-led discussion, with the exception of two weeks before you present. Evaluations will be submitted using Moodle (linked to a Google Form). Students who led the discussion will complete a self-evaluation.

Participation – Regular and productive comments (or questions) are expected during every class meeting. Productive comments broaden or deepen the material, whereas unproductive comments will distract from the course objective. If you are unclear about your level of participation, please ask for and I will provide feedback.

Final Exam (Oral) – The final exam will be conducted in small groups with 2-3 question/answer rounds. The exam will be based on a published research article with associated questions provided one week before the exam date. Additional details will be provided closer to the exam date, December 17th at 8:30 am.

M. Rouhier

College and Departmental Learning Goals

Kenyon is institutionally committed to promoting a liberal arts education and as such has outlined the learning goals for your college-wide education that promoted and developed skills that are useful to any career but also essential for a fulfilling and valuable life. In addition, the community of students and faculty in the Chemistry Department are dedicated to achieving skills interlaced with the chemical world. The learning goals of this course are grounded on those suggested by both the college and the department. If you would like to learn more about Kenyon's learning objectives or the Chemistry Department's learning objectives, visit: https://www.kenyon.edu/directories/offices-services/registrar/course-catalog-2/administrative-matters/kenyon-college-its-mission-and-goals/ or https://www.kenyon.edu/directories/offices-services/offices-ser

Chemistry Departmental Goals:

Learning Goal/Objective	Learning	Details
	Assessment	
1. Each student should learn sufficient chemistry to serve her or	Chemistry	Students will link a
him well in life after Kenyon.	Concept Links	cooking/baking concept with
		the underlying chemistry each
		week.
2. Each student should learn to write well by being required to	Response-To-	Students will submit short
answer essay exam questions, write term papers, problem set	Readings	answers for each set of
answer sheets, laboratory and research reports, all critically		readings.
evaluated by faculty.		
3. Each student should learn effective oral communication skills by	Participation	Students will present twice on
being encouraged to ask questions in all classes and converse	Student-Led	primary literature during the
frequently with faculty, and required to make extended oral	Discussions	course and discuss as a class all
presentations in more advanced classes as well as in the		readings.
departmental Senior Capstone.		
4. Each student become skilled at formulating and solving		
problems, both qualitative and quantitative, through the working		
of problem sets and exam questions and by engagement with		
laboratory and research projects.		
5. Each student should learn to access, evaluate and use		
information from computerized information sources.		
6. Each student should be encouraged to relate chemistry to other	Concept	Students will relate
areas of inquiry and knowledge by enrolling in courses in other	Rewrite	cooking/baking to chemistry
sciences, the fine arts, social sciences and humanities.		and food changes each week.

College Goals:

Learning Goal/Objective	Learning	Details
	Assessment	
a) Students acquire knowledge and	Concept Rewrite	Students will deepen their understanding of natural
understanding of fine arts,		science by taking a cooking/baking concept and
numanities, natural sciences, and	Concept Link	rewording it in the language of the chemical reactions that
		are driving that food change.
b) Students learn gather information	Response-To-	Students will read primary literature, evaluate the merits
avaluate its quality	Readings (RTR)	and answer questions about what they read. Students will
evaluate its quality.	Discussions	also select and present on related primary interature.
c) Students learn to formulate ideas	RTR	Students will answer questions on the readings each class
rigorously and communicate them	& Student-Led	Twice a semester they will present based on a piece of
effectively in speaking and in	Discussions	primary literature, and most weeks will evaluate the
writing	& Evaluations	presentations to gain insight into what makes an effective
withing.		presentation.
d) Students learn languages and		
engage with diverse cultures.		
e) Students address ethical	RTR	In the readings we will encounter questions about the
questions and make informed		quality of data and the societal implications of work.
qualitative judgments.		
f) Students acquire quantitative skills	RTR & Student-	Students will be evaluating data from primary literature
and analyze data.	Led Discussions	and discussing it with the class.
	& Final Exam	
g) Students develop an aesthetic		
sensibility through practice and		
critical examination of the fine,		
pertorming, and literary arts.		
h) Students learn to work creatively.	Concept Rewrite	Student will rewrite lay-language concepts into scientific
,		terms forcing concept connections.
i) Students learn to work	Student-Led	Student will work in teams to present on primary literature
collaboratively and across disciplines	Discussions	and as a class to discuss the literature. The material and
		techniques of food chemistry draw heavily from the
		physical and biological fields.
j) Prepare for leadership and for civic		
and community engagement		

CHEM 401.00 FA19

Tuesday	1	Readings for Tuesday	Thursday		Experiments?
			8/29	The 4 Basic Food Molecules	C. Chip Cookies
9/03	Cooking: Methods & Materials (C1: Gentle	McGee - Ch. 14 p780-791	9/05	Article – Blueberries (see	Caramels
	heat prevents overcooking)	Cook's Illustrated - C1		Moodle page)	
9/10	Tea & Coffee (Espresso, like geology, is all	McGee - Ch. 8 p433-448	9/12	Article – Espresso (see Moodle	Cold-brew Vs
	about time and pressure)	HowStuffWorks - How Espresso Works		page)	Hot-brew
9/17	Seeds: Grains, Legumes & Nuts (Palm oil	McGee: p37-38, 452-459, 501-513	9/19	Article – Palm oil shortening	?
	is the new trans-fat)	Podcast: World hooked on palm oil		(see Moodle page)	
9/24	Eggs (C21: Whipped egg whites need	McGee Ch 2: p69-87, 100-116	9/26	Student Article #1-1	Meringue
	stabilizers)	Cook's Illustrated - C21			Cookies
10/1	Meat (C35: Glutamates, nucleotides add	McGee -Ch 3: p121-124, 147-154	10/3	Student Article #1-2	MSG broth
	meaty flavor)	Cook's Illustrated - C35			
10/8	Flex topic	TBD	10/10	Fall Break	Pretzels with
					H_2CO_3
10/15	Common Fruits (C49: Sugar and time make	McGee - Ch 7: p350-353	10/17	Student Article #1-3	Proteins as
	fruit juicer)	Cook's Illustrated - C49			Sweeteners
10/22	Common Vegetables (C17: Good frying is	McGee – Ch 5: p245-252, 261-270, 286	10/24	Student Article #1-4	Funnel-Cakes
	all about oil temperature)	Cook's Illustrated - C17			
10/29	Herbs & Spices (C33: Bloom spices to boost	McGee - Ch 8: p387-401	10/31	Student Article #1-5	Spiced Rice
	their flavor)	Cook's Illustrated - C33			
11/5	Milk and Dairy (CI: Young cheeses make	McGee - Ch. 1 p6-16, 19-21, 44-59	11/7	Student Article #2-1	Colloid
	better grilled cheese)	Cook's Illustrated - Young Cheese Article			Formation
11/12	Cereal Doughs and Batters (C42: Two	McGee - Ch. 10: p517-550	11/14	Student Article #2-2	NH ₄ HCO ₃
	leaveners are often better than one)	Cook's Illustrated - C42			cookies
11/19	Sugars, Chocolate & Confectionary (The	McGee - Ch. 12: p645-663, 680-694	11/21	Student Article #2-3	Rock, Fudge,
	crystal makes the candy)	ChemMatters - Sweet science of candy			& Candy Glass
11/26	Thanksgiving Break		11/28	Thanksgiving Break	
12/3	Wine, Beer & Distilled Spirits (CI: The key	McGee Ch. 14 p715-720, 758-771	12/5	Student Article #2-4	Milk Punch
	to crystal-clear cocktails? Milk (Really))	Cook's Illustrated - Crystal-clear cocktails			
12/10	Future of Food (??? Non-browning, GM,	No McGee	12/12	Student Article #2-5	?
	cultured meats?)	Assigned podcast			
12/17	Final Exam (Tuesday 8:30-11:30 am)	TBD			