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1 Introduction

When my father, Professor Ben Schumacher, was collaborating on a paper
about quantum entanglement (see [3]), he modeled part of the problem using
a metaphor he called the Wise Yenta problem. In the example, a yenta (or
gossipy old woman) was given the task of acting as a matchmaker for a
village. Wise as she was, she want to marry off all the girls in the village to
suitable men. When is this is possible? And what happens if none of her
matches work out, and she has to help a bunch of recent divorcées find love?

It turns out that both of these problems can be solved using graph the-
ory, a versatile branch of mathematics that (among other things) can be
used to model complex social relationships. This paper will give an intro-
duction to this field through following the Wise Yenta narrative, which we
will introduce in the next section.

2 The Yenta and the Marriage Problem

Once upon a time, there was an old woman who everyone called the Wise
Yenta. The things she loved best in the world were gardening, mathematics,
and helping people in need. One day, she went to visit a nearby village to
buy some new seeds. This particular village had no matchmaker, and there
were n eligible young girls ready to be married off. Desperate to find them
husbands, the families of these girls had begun to fight amongst themselves,
and the whole village was in turmoil. Seeing the distress it was causing, the
Wise Yenta stepped in and offered to serve as matchmaker herself.

The problem proved more complicated than she expected. To begin
with, there were only a limited number of young men available to marry
these girls. Furthermore, because the Wise Yenta was a stranger to the
area, the families each provided a list of vetted candidates and refused to
consider any other offers. With these restrictions, it was unclear whether
some of the girls could marry at all, but the Yenta was undaunted. Surely
mathematics could solve this thorny problem!

The Wise Yenta’s dilemma turns out to be a variant of a classic thought
experiment known as the Marriage Problem, as shown in Problem 2.0.1:

Problem 2.0.1. Suppose there exists a finite set of m girls G, who between
them collectively know the members of a set of boys B (of no particular
size). Our goal is to marry them off in such a way that each girl is paired
with a boy she knows. Under what conditions does a solution exist?
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And luckily for the Yenta, the Marriage Problem was solved in 1935,
by mathematician Philip Hall (see [6]). His result became known as Hall’s
Marriage Theorem:

Theorem 2.1 (Hall’s Marriage Theorem). A solution to the marriage prob-
lem exists iff each subset of k girls in G collectively knows at least k boys in
B, for 1 ≤ k ≤ m.

In the next section, we will work through two classic proofs of this the-
orem, each using a different mathematical technique. But before we can
begin proving anything, we will need some foundational knowledge of graph
theory. The following definitions, found in [6] and [1], will serve to get us
off the ground:

Definition 2.2. A graph is an ordered pair of disjoint sets G = G(V,E),
where E ⊆ V × V . Elements of V are known as vertices and elements of E
are known as edges.

There are actually two types of graphs, defined by the properties of their
set of edges. An undirected graph has the symmetric and antisymmetric
properties: that is, for every a, b ∈ V , if the edge (a, b) ∈ E, then the
edge (b, a) ∈ E and (a, b) = (b, a). In a directed graph, this is not the
case. However, for the purposes of this paper, all graphs examined will be
undirected graphs, and we will represent the edge (a, b) by simply writing
ab.

Graphs can also be represented visually, where each vertex (a, b, etc.) is
represented by a point in space and each edge ab is a line segment with
vertices a and b as endpoints (as in Figure 1).

Definition 2.3. Two vertices of a graph a, b ∈ V are adjacent if there exists
an edge e ∈ E such that e = ab.

Notice, now, how simple it is to model the marriage problem using graph
theory. The people involved can be represented by vertices, and two vertices
are adjacent if they know each other. However, also notice that the vertices
will fall into two distinct sets (boys and girls) and that the only edges possible
will be between these two sets. This is an example of a specific type of graph
known as a bipartite graph:

Definition 2.4. A bipartite graph is a graph G(V,E) where V is the disjoint
union of two sets V1 and V2, and for every edge ab ∈ E, a ∈ V1 and b ∈ V2

(as in Figure 2). Bipartite graphs are typically written G = G(V1, V2, E).
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Figure 1: The visual representation of a graph.

Figure 2: The visual representation of a bipartite graph, with the sets V1

and V2 indicated.
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It is also possible to consider the pieces of a graph as opposed to the
whole. We can even combine these together into new graphs, known as
subgraphs.

Definition 2.5. A subgraph of a graph G = G(V,E) is a graph G∗(V ∗, E∗),
where V ∗ ⊆ V and E∗ ⊆ E.

Examining subgraphs can be useful for a lot of different problems. For
the Yenta’s, a specific type of subgraph is especially useful:

Definition 2.6. A complete matching in a bipartite graph G = G(V1, V2, E)
is a subgraph of G in which every vertex in V1 is adjacent to at least one
vertex in V2. (Note, however, that there may be vertices in V2 that are not
adjacent to vertices in V1).

Notice that any solution to the Marriage Problem will be a complete
matching: every girl in V1 will be paired with a boy in V2. For the first
proof of Theorem 2.1 we will examine, nothing further is needed. However,
the second proof requires one more definition from set theory, that of a
transversal:

Definition 2.7. Let K be a non-empty finite set, and let F=S1, . . . , Sm

be a collection of non-empty (not necessarily distinct) subsets of K. A
transversal of F is a set of m distinct elements of K, one chosen from each
of the sets Si.

3 Two Proofs of the Marriage Theorem

We begin with the first of two classic proofs of Theorem 2.1, the proof
attributed to Halmos and Vaughn (see [6]). It uses complete induction, a
typical way to prove graph theory concepts, and can be stated easily in
‘marriage’ terminology. The advantage of this is that the proof is very easy
to understand, even by people without much background in graph theory:
in fact, it is almost unnecessary to know what a graph is! However, the same
proof can be written in terms of adjacent vertices and finding a complete
matching.

Halmos-Vaughn Proof of the Marriage Theorem.

(=⇒) Suppose that a solution to the marriage problem exists; that is, that
the Wise Yenta can arrange marriages such that every girl is married to a
boy she knows. Then each girl knows at least one boy: namely, the one she
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is married to. Thus, any two girls will collectively know at least the two
boys they were paired with, any three girl will know at least three boys, and
so on, all the way up to m. Thus, if a solution exists, each subset of k girls
collectively knows at least k boys, for 1 ≤ k ≤ m.

(⇐=) Let m ∈ N. Assume that for some set G of m girls, every subset of k
girls collectively know at least k boys for 1 ≤ k ≤ m. We shall proceed by
induction on m. Note that the base case is trivial: if |G| = 1, that girl must
know at least one boy in order to marry.

Now suppose that for all of girls Gt of size t, 1 ≤ t < m, Hall’s marriage
theorem holds true–in other words, if every subset of size k collectively knows
at least k boys, then the Wise Yenta can marry them off. Now consider again
our set of size m. Given our original assumption about G, we can now split
this section of the proof into two subcases:

Case (i) Suppose that for all k < m, each subset of k girls collectively knows
at least k+1 boys. The Wise Yenta can now marry one of the girls, gm, to a
boy she knows, bm, leaving the other m− 1 girls unmatched. Note now that
every subset of k unmatched girls collectively knows at least k eligible boys:
if they knew k+1 including bm, they now know k. Furthermore, m−1 < m;
thus, by our induction hypothesis, the Wise Yenta can marry off the rest of
the remaining girls to boys they know.

Case (ii) Suppose that for some k < m, there exists a subset of k girls Gk∗
that collectively knows exactly k boys. By our induction hypothesis, the
Wise Yenta can marry off these girls to those boys, leaving m − k girls
unmatched. Notice that among those remaining girls, every subset of h
girls Gh∗ must know at least h eligible boys–otherwise, the girls in the
subset Gk ∗ ∪Gh∗ would know fewer than h + k boys, violating our original
assumption. Thus, since m− k < m, the remaining girls can all be married
off to boys they know.

In either case, a solution to the marriage problem exists. Thus, if Hall’s
Marriage Theorem is true for t < m, it is also true for m.

Therefore, by mathematical induction, if every subset of k girls in G col-
lectively know at least k boys, for 1 ≤ k ≤ m, then a solution to the marriage
problem exists. Therefore, we have proven Hall’s Marriage Theorem.

The second proof of the Marriage Theorem is attributed to Rado (see [6])
and uses set theory. It has a few advantages compared to that of Halmos-
Vaughn: not only does it avoid splitting the proof into cases, it also suggests
an algorithm for finding a solution to the Marriage Problem (rather than
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just proving a solution must exist). However, it is almost impossible to state
in marriage terminology, requiring us to restate Theorem 2.1 in a different
way:

Theorem 3.1. Let G be a non-empty finite set, and let F=S1, . . . , Sm be
a collection of non-empty subsets Si ⊆ G. Then F has a transversal if and
only if the union of any k of the subsets Si contains at least k elements
(1 ≤ k ≤ m).

Though it looks very different, this is the same as Hall’s Marriage theo-
rem. Given a set of girls G, we can think of each girl as the name of a subset
Si (with each boy she knows being an element of Si). Finding a transversal
of G, then, is logically equivalent to selecting one boy from each girl’s list
for her to marry–in other words, finding a solution. Since the condition for
a transversal to exist is the same as before, all that remains is to prove the
theorem.

Rado Proof of the Marriage Theorem.

(=⇒) Suppose that F has a transversal. Then each set Sj has at least one
element distinct from all the others. Thus, the union of any k of the those
Sjs will contain at least k elements, for 1 ≤ k ≤ m.

(⇐=) Suppose that the union of any k of the subsets Si contains at least k
elements (1 ≤ k ≤ m). Note that if the Sis were all disjoint singleton sets,
the proof would be trivial: the transversal would just be the union of all the
Si. Also note that if any of the sets (without loss of generality, call it S1)
had more than one element, and if it were always possible to remove one
of the elements of S1 without violating our original assumption, we could
repeat the process and reduce the problem to a case of distinct singleton
sets (through relabelling if necessary).

To prove that we can in fact remove one of the elements of S1, we shall
proceed by contradiction. Suppose there exists an S1 incapable of being
reduced to a singleton set: that is, for some distinct x, y ∈ S1, the removal
of either x or y from S1 violates our original assumption. Then there exist
two sets A,B ⊆ {2, 3, . . . ,m} such that, for P =

⋃
j∈A Sj ∪ (S1 \ {x}) and

Q =
⋃

k∈B Sk ∪ (S1 \ {y}), |P | ≤ |A| and |Q| ≤ |B|.
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Notice, then, that because unions can be taken in any order and x 6= y:

P ∪Q =

⋃
j∈A

Sj ∪ (S1 \ {x})

⋃(
(S1 \ {y}) ∪

⋃
k∈B

Sk

)

= (S1 \ {x}) ∪ (S1 \ {y})
⋃ ⋃

j∈A∪B
Sj


= S1 ∪

 ⋃
j∈A∪B

Sj

 .

Thus, we can conclude that |P ∪Q| =
∣∣∣S1 ∪

⋃
j∈A∪B Sj

∣∣∣.
Notice, also, that because unions and intersections distribute over each

other and S ⊆ S ∪ T for any sets S, T :

P ∩Q =

⋃
j∈A

Sj ∪ (S1 \ {x})

 ∩(⋃
k∈B

Sk ∪ (S1 \ {y})

)

=

⋃
j∈A

Sj ∪ (S1 \ {x}) ∩ (
⋃
k∈B

Sk)

 ∪
⋃

j∈A
Sj ∪ (S1 \ {x})

⋂
(S1 \ {y})


⊇

⋃
j∈A

Sj ∪ (S1 \ {x})

 ∩(⋃
k∈B

Sk

)

=

 ⋃
j∈A∩B

Sj

 ∪((S1 \ {x}) ∩ (
⋃
k∈B

Sk)

)

⊇
⋃

j∈A∩B
Sj .

Hence, |P ∩Q| ≥
∣∣∣⋃j∈A∩B Sj

∣∣∣.
This gives us all the pieces we need to reach a contradiction, proceeding

as follows:
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|A|+ |B| ≥ |P |+ |Q| (1)

= |P ∪Q|+ |P ∩Q| (2)

≥

∣∣∣∣∣∣S1 ∪
⋃

j∈A∪B
Sj

∣∣∣∣∣∣+

∣∣∣∣∣∣
⋃

j∈A∩B
Sj

∣∣∣∣∣∣ (3)

≥ (|A ∪B|+ 1) + |A ∩B| (4)

= |A|+ |B|+ 1 (5)

Inequality (1) follows from our definition of P and Q, Equality (2) from a
well-known fact in set theory known as the Principle of Inclusion and Exclu-
sion (see Chapter 3 of [4]). Inequality (4) follows from Hall’s condition (i.e.,
that every union of k subsets contains at least k elements), and Inequality
(5) follows from the same principle as (2). This leads to a contradiction,
since |A| + |B| < |A| + |B| + 1 for finite sets. Therefore, every Si can be
reduced to a singleton set without violating Hall’s condition, and hence F
has a transversal.

Therefore, F has a transversal if and only if the union of any k of the
subsets Si contains at least k elements (1 ≤ k ≤ m).

Notice that both proofs insist that the set of girls be finite, and this is
indeed necessary: the proofs fail when considering infinite sets. Interestingly,
though, the proofs fail in different ways. The Halmos-Vaughn proof fails
because induction on the size of infinite sets simply does not make any
sense. The Rado proof, on the other hand, fails because of cardinality: the
crucial contradiction that makes the reduction process valid is no longer
contradictory when dealing with infinite sets, and thus a transversal cannot
be found. In both cases, however, we end up at the same conclusion: Hall’s
Marriage Theorem only applies to finite sets, and tells us nothing about the
infinite case.

4 The Yenta and the Dating Divorcées

Now let us return to the story of the Wise Yenta. Having determined that
she can indeed pair off all the young ladies to men they have met, she goes
through Rado’s reduction process and manages to arrange matches for all
her clients. The families are delighted and host a massive n-tuple wedding,
and the Yenta goes back to her gardening, satisfied that she has brought a
little happiness into the world.
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Unfortunately, the fact that two people are acquainted with one another
does not imply that they will be compatible as a couple. A few months
later, the Yenta returns to the village and discovers to her dismay that her
arranged marriages, far from being blissful, have all ended in messy divorces.
Horrified that she has caused so much unhappiness, the Wise Yenta decides
to make amends for her poor choices. She approaches the families again,
this time offering to help the recent divorcées find love for themselves. She
plans to host a series of get-togethers to which subsets of the young people
will be invited, allowing them to mingle and meet each other–but, wishing
to avoid any awkwardness, she will carefully organize the guest lists to keep
estranged couples apart. The families reluctantly agree, and the Wise Yenta
turns once again to mathematics to help her figure out the logistics.

To begin with, like any good mathematician, she tries to get a feel for
the problem by considering a smaller example. She begins with a subset of
five couples: Alfred and Amelia, Edgar and Evelyn, Ivan and Irene, Otto
and Olivia, and Ulrich and Ursula (see Figure 3).

Figure 3: The graph of the admissible matches in the Five Couples example.
M is the set of men and W is the set of women.

At first, the Yenta considers sending all the eligible couples on a series of
solo dates, but she quickly abandons that idea due to fiscal concerns. Since
she is paying for all the parties herself, she decides to find an arrangement
with as few parties as possible. Also, she decides to avoid redundancy and
make sure that each eligible couple meets exactly one time. After playing
around for a while, she finds three arrangements to her liking:
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• The Harem: In her first arrangement, the Yenta throws five parties.
To each, she invites one man, and all the women except the man’s
ex-wife (see Figure 4).

Figure 4: The Harem Arrangement for the Five Couples example.

• Belle of the Ball: The second arrangement is a reflection of the
first: five parties, each attended by one woman and all men except her
ex-husband (see Figure 5).

• The Double-Blind Date: In her third arrangement, the Yenta or-
ganizes five parties with two men and two women attendees each (see
one example in Figure 6).

All three of these arrangements have a number of things in common.
First, the smallest numbers of parties she could find was five–the same as
the number of divorced couples. Second, each party is attended by the same
number of men and the same number of women–and the product of these
numbers is 1 ∗ 4 = 4 ∗ 1 = 2 ∗ 2 = 4. Furthermore, the number of parties
each man attends is the same number as the number of men at each party,
and a similar fact is true for the women. Finally, these party groupings
are formed in a specific manner: if one were to swap the sets of men or
women from any two parties, those two subsets would each contain one–and
only one–divorced couple. As it turns out, these properties also characterize
the parties that can be arranged for n couples; this leads to the following
theorem, whose statement and proof can be found in [5]:
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Figure 5: The Belle of the Ball Arrangement for the Five Couples example.

Figure 6: The Double-Blind Date Arrangement for the Five Couples exam-
ple.
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Theorem 4.1 (The Divorce Theorem). Suppose the Wise Yenta wishes to
arrange a series of parties for n divorced couples, n ≥ 2, where each eligible
couple meets exactly once and estranged couples never meet. The fewest
number of parties she can host under these conditions is n.

Furthermore, given a set of n such parties, there exist r, s ∈ Z+ such
that

a) rs = n− 1,

b) There are r men and s women attending each party,

c) Each man attends exactly r parties and each woman attends exactly s
parties, and

d) Given any two distinct parties, the union of the men at the first party
and the women at the second party will contain exactly one estranged
couple.

Before we can begin proving this theorem, we will need a few additional
definitions, also found in [5]:

Definition 4.2. Let B = G(V1, V2, E) be a bipartite graph. A biclique of
B is an ordered pair (X,Y ), where X ⊆ V1, Y ⊆ V2, and X × Y ⊆ E.

Definition 4.3. Let B = G(V1, V2, E) be a bipartite graph. Two bicliques
of B (X1, Y1) and (X2, Y2) are said to be disjoint if (X1×Y1)∩(X2×Y2) = ∅.

Definition 4.4. Let B = G(V1, V2, E) be a bipartite graph. A biclique
partition of B is a collection of bicliques of B (X1, Y1), (X2, Y2), . . . , (Xt, Yt)
such that (Xi, Yi) and (Xj , Yj) are disjoint for all i 6= j, and E = (X1 ×
Y1) ∪ (X2 × Y2) ∪ . . . ∪ (Xt × Yt).

Notice that for each uw ∈ E, ({u}, {w}) is a biclique of B. Thus, the
collection of all such bicliques is a biclique partition by definition, so B
always has at least one. Often, however, B has more than one biclique

partition, and
⋃

uw∈E
({u}, {w}) is not the most efficient way to partition the

graph. The next two definitions give us a way of identifying and quantifying
a partition’s efficiency.

Definition 4.5. Let B = G(V1, V2, E) be a bipartite graph. The biclique
partition number of B is the smallest number t such that there exists a
biclique partition (X1, Y1), (X2, Y2), . . . , (Xt, Yt) of B.
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Definition 4.6. Let B = G(V1, V2, E) be a bipartite graph. An exact
biclique partition of B is a biclique partition (X1, Y1), (X2, Y2), . . . , (Xt, Yt)
of B where t is the biclique partition number of B.

From here, we can translate the Wise Yenta’s problem into graph-theoretical
terms. In this situation, B = G(M,W,E), where M is the set of men, W
is the set of women, and E is the set of all eligible couples. Each individ-
ual party the Yenta hosts is a biclique, the set of all parties she hosts is
a biclique partition, and the fewest number of parties she can host is the
biclique partition number. The Yenta’s eventual goal is to create an exact
biclique partition of B.

Again following [5], we will use elementary linear algebra techniques to
prove Theorem 4.1. We can do this by defining a matrix that represents our
graph, called an adjacency matrix.

Definition 4.7. Let G = (V,E) be a graph, where V = {v1, v2, ..., vn}. The
adjacency matrix of G is the n× n matrix A = [aij ], where

aij =

{
1 if vivj ∈ E
0 otherwise.

This definition is general and will work for any graph. However, notice
that in the case of a bipartite graph, the adjacency matrix will always be
divided into four blocks: two of them (the ones with only elements of V1 or
only V2) will contain only zeroes, and the remaining two will be transposed
versions of each other. Thus, it is often more useful to use an alternate
matrix representation, the reduced adjacency matrix:

Definition 4.8. Let G = (V1, V2, E) be a bipartite graph, where V1 =
{u1, u2, ..., um} and V2 = {w1, w2, ..., wk}. The reduced adjacency matrix of
G is the m× k matrix A = [aij ], where

aij =

{
1 if uiwj ∈ E
0 otherwise.

From this point on, we have all the definitions necessary to prove Theo-
rem 4.1, which we shall do in Section 5.
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5 Proving the Divorce Theorem

Before we can prove Theorem 4.1, we will first need to prove a series of
technical lemmas. Two of them, Lemma 5.4 and Lemma 5.6, are needed to
prove the theorem itself, and the rest of them help to prove these lemmas.
The notation defined at each stage will be used throughout the rest of the
paper unless explicitly stated otherwise.

Let M = {m1, . . . ,mk} and W = {w1, . . . , wl}. Let B = G(M,W,E),
where E ⊆M ×W . The reduced adjacency matrix of B is the k× l matrix
A = [aij ] such that

aij =

{
1 if miwj ∈ E
0 otherwise.

For any R ⊆M , we shall define the column vector

~R =

 r1
...
rk


where

ri =

{
1 if mi ∈ R
0 otherwise.

Similarly, for any S ⊆W , we shall define the column vector

~S =

 s1
...
sl


where

si =

{
1 if wi ∈ S
0 otherwise.

Thus, ~ST = [s1 . . . sl]. Notice that ~R~ST = [bij ] is a k × l matrix, and
that

bij =

{
1 if ri = si = 1
0 otherwise

(This is pretty easy to see, since ~R is a single column and ~ST is a single
row.)

Notice, also, that if G is a bipartite graph G(M,W,R × S), then ~R~ST

is the reduced adjacency matrix of G. From here, we proceed to the first of
our lemmas:
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Lemma 5.1. Let bij be the ijth entry of ~R~ST . Then bij ≤ aij if and only
if (R,S) is a biclique of B.

Proof.

(⇐=) Suppose that (R,S) is a biclique of B. Then R×S ⊆ E by definition.
Therefore, if aij = 0 for any i, j, bij = 0. If aij = 1, then either bij = 0 or
bij = 1 depending on whether miwj ∈ R× S. Thus, bij ≤ aij for all i, j.

(=⇒) Suppose that for some matrix G = ~R~ST , bij ≤ aij for all i, j. Thus,
bij = 1 implies that aij = 1. By the definition of a reduced adjacency
matrix, the ijth entry is 1 if and only if miwj is in the edge set for the graph.
Therefore, all the elements of R × S are also elements of E. Therefore, by
definition, R × S ⊆ E. Since R ∈ M and S ∈ W by design, we can now
conclude that (R,S) is a biclique of B.

Therefore, bij ≤ aij for all i, j if and only if (R,S) is a biclique of B.

Now we will use this fact to prove the next lemma, which characterizes
a biclique partition by its adjacency matrix, and vice versa.

Lemma 5.2. Let X1, X2, . . . , Xp ⊆ M and Y1, Y2, . . . , Yp ⊆ W . Then

(X1, Y1), (X2, Y2), . . . , (Xp, Yp) is a biclique partition of B iff A =

p∑
l=1

~Xl
~Yl

T
.

Proof.

(=⇒) Suppose that (X1, Y1), (X2, Y2), . . . , (Xp, Yp) forms a biclique partition
of B. Suppose also that for some i, j, aij = 1. Then miwj ∈ E and
miwj ∈ Xs × Ys for exactly one value 1 ≤ s ≤ p. Thus, the ijth entry of

~Xs
~Ys

T
= 1, and the ijth entry of ~Xr

~Yr
T

= 0 for r 6= s. Thus, the ijth entry

of

p∑
l=1

~Xl
~Yl

T
= 1 = aij .

Now suppose that for some i, j, aij = 0. Then miwj /∈ E, and there is

no r such that miwj ∈ Xr × Yr. Thus, the ijth entry of ~Xr
~Yr

T
= 0 for all

1 ≤ r ≤ p. Thus, the ijth entry of

p∑
l=1

~Xl
~Yl

T
= 0 = aij .

Therefore, aij = the ijth entry of

p∑
l=1

~Xl
~Yl

T
for all i, j. Therefore, by

definition, A =

p∑
l=1

~Xl
~Yl

T
.

16



(⇐=) Suppose that A =

p∑
l=1

~Xl
~Yl

T
. Since all the summands’ entries are

either 0s or 1s, the entries of each ~Xr
~Yr

T
must be less than or equal to each

to the corresponding entries of A. Thus, by Lemma 5.1, each (Xr, Yr) is a
biclique of B.

Now consider an arbitrary edge miwj ∈ E. Since aij = 1, we know

that the ijth entry of

p∑
l=1

~Xl
~Yl

T
is also 1. And since each ~Xr

~Yr
T

is a (0, 1)-

matrix, there must be a unique s such that the ijth entry of ~Xs
~Ys

T
= 1.

Thus, miwj ∈ Xs × Ys for exactly one s, and thus is an element of exactly
one of the bicliques. Since miwj was arbitrary, this will be true of any edge
in E. Thus, (X1, Y1), (X2, Y2), . . . , (Xp, Yp) forms a biclique partition of B.

Therefore, (X1, Y1), . . . , (Xp, Yp) forms a biclique partition of B iff A =
p∑

l=1

~Xl
~Yl

T
.

This particular characterization of a biclique partition is useful, but it
can be taken even farther; we can use block multiplication of matrices to
write A in terms of a matrix product, as the next lemma will show.

Lemma 5.3. (X1, Y1), . . . , (Xp, Yp) is a biclique partition of B iff A = XY ,

where X is a k × p (0, 1) matrix whose ith column is ~Xi, and Y is a p × l

(0, 1) matrix whose ith row is ~Yi
T

.

Proof.

(=⇒) Let X1, X2, . . . , Xp ⊆ M and Y1, Y2, . . . , Yp ⊆ W , and suppose that

(X1, Y1), . . . , (Xp, Yp) is a biclique partition of B. Define X = [ ~X1 · · · ~Xp]
and

Y =


~Y1

T

...

~Yp
T


Then, by using block multiplication of matrices, we find that XY =

p∑
l=1

~Xl
~Yi

T
=

A, the reduced adjacency matrix of B.

(⇐=) Conversely, suppose that there exist k × p and p× l (0, 1) matrices X

and Y such that A = XY . Define ~Xi to be the ith column of X, and ~Yi
T

to
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be the ith row of Y . Then by block multiplication of matrices, A = XY =
p∑

l=1

~Xl
~Yi

T
, and by Lemma 5.2, (X1, Y1), . . . , (Xp, Yp) is a biclique partition

of B.
Therefore, (X1, Y1), . . . , (Xp, Yp) is a biclique partition of B iff A = XY .

Notice that in this scenario, p is the number of distinct bicliques in our
biclique partition. The biclique partition number bp(B), therefore, is the
smallest value of p such that A = XY . By specializing to our particular
example of the n divorced couples, n ≥ 2, we can now prove the first of our
pivotal lemmas:

Lemma 5.4. Let M = {m1, . . . ,mn} be the set of men and W = {w1, . . . , wn}
be the set of women. Let B = G(M,W,E), where E = {miwj ∈M ×W |i 6=
j}. Then bp(B) = n.

Proof. By our definition of the matrix X, we know that bp(B) ≥ rank(X) ≥
min(rank(X), rank(Y )). We also know from linear algebra that min(rank(X), rank(Y )) ≥
rank(XY ) = rank(A) (see Section 3.5 of [2]). Thus, bp(B) ≥ rank(A).

Let A = Jn−In, where Jn is the n×n matrix of all 1s, and In is the n×n
identity matrix. For any n ∈ N, we can perform the following calculation:

(
1

n− 1
(Jn − In)

)
A =

(
1

n− 1
(Jn − In)

)
(Jn − In)

= In

Thus, A is invertible, and by the Fundamental Theorem of Invertible
Matrices (see [2]), we know that rank(A) = n. Thus bp(B) ≥ n. Notice that
({mi}, {wj : i 6= j}) is a biclique of B for each 1 ≤ i ≤ n (i.e., the Harem
arrangement from our example). Furthermore, ({mi : i 6= j}, {wj :}) is a
biclique of B for each 1 ≤ j ≤ n (i.e., the Belle of the Ball arrangement).
Thus, there exist biclique partitions with size |M | = |W | = n, and we know
that bp(B) ≤ n. Thus, n ≤ bp(B) ≤ n, and by the antisymmetric property
of ≤, bp(B) = n.

This lemma tells us that given an exact biclique partition of of the n
divorced couples, the matrices X and Y will be of dimension n×n–in other
words, they must be square!

At this point, we move onto the second act of the proof. After a brief
interlude in which we prove a technical fact about determinants, we shall
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then use this to prove the pivotal Lemma 5.6, where most of the work of
proving Theorem 4.1 is accomplished.

Lemma 5.5. Suppose that for A = XY , X is an n × k and Y is a k × n
matrix. Then det(In + XY ) = det(Ik + Y X).

Proof.[
Ik + Y X

X

0

In

] [
Ik
0

Y

In

]
=

[
(Ik)2 + Ik(Y X) + 0

X + 0

Y + Y X(Y ) + 0

XY + (In)2

]
=

[
Ik + Y X

X

Y + Y XY

XY + In

]
=

[
Ik + Y X

X

Y (In + XY )

In + XY

]
=

[
I2k + Y X

X

0 + Y (In + XY )

I2n + In(XY )

]
=

[
Ik
0

Y

In

] [
Ik
X

0

In + XY

]
Since these two matrix products are equal, their products’ determinants

must also be equal. Therefore:

det

([
Ik + Y X

X

0

In

] [
Ik
0

Y

In

])
= det

([
Ik
0

Y

In

] [
Ik
X

0

In + XY

])
det

[
Ik + Y X

X

0

In

]
det

[
Ik
0

Y

In

]
= det

[
Ik
0

Y

In

]
det

[
Ik
X

0

In + XY

]
det(Ik + Y X) ∗ det(In) ∗ det(Ik) ∗ det(In) = det(Ik) ∗ det(In) ∗ det(Ik) ∗ det(In + XY )

det(Ik + Y X)(1)(1)(1) = (1)(1)(1)det(In + XY )

det(Ik + Y X) = det(In + XY )

Lemma 5.6. Let X and Y be n×n (0, 1)-matrices with XY = Jn− In and
n ≥ 2. Then XY = Y X, and there exist r, s ∈ Z+ with rs = n − 1 such
that XJn = JnX = rJn and Y Jn = JnY = sJn.

Proof. Let ~Xi = the ith column of X and ~Yi
T

= the ith row of Y . By
definition, we know that tr(XY ) = tr(Jn − In) = 0 + 0 + . . . + 0 = 0.
Furthermore, tr(XY ) = tr(Y X) for any matrix product XY (see Section
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3.2 of [2]). The definition of trace tells us that tr(Y X) =
n∑

l=1

~Yi
T ~Xi. Thus,

n∑
l=1

~Yi
T ~Xi = 0, and since these are all (0, 1)-matrices, ~Yi

T ~Xi = 0 for all

1 ≤ i ≤ n.
Let e be the n × 1 vector of all 1s. Then Jn = eeT . Fix i, j ≤ n. For

i 6= j, we have

A = Jn − In

= eeT − In

= XY

=
n∑

l=1

~Xl
~Yl

T
.

Thus, eeT − In =
n∑

l=1

~Xl
~Yl

T
. Now, adding In and subtracting

∑
l 6=i,j

~Xl
~Yl

T

from both sides of the equation, we can conclude that eeT −
∑
l 6=i,j

~Xl
~Yl

T
=

In + ~Xi
~Yi

T
+ ~Xj

~Yj
T

.

Notice rank(eeT ) = 1, and that each ~Xk
~Yk

T
has rank 1. Thus, eeT −∑

l 6=i,j

~Xl
~Yl

T
is the sum of n − 1 matrices of rank 1. We know from linear

algebra that the rank of sum matrices is at most of the sum of the ranks

of the individual matrices (see Section 3.5 of [2]). Thus, rank(In + ~Xi
~Yi

T
+

~Xj
~Yj

T
) = rank(eeT−

∑
l 6=i,j

~Xl
~Yl

T
) ≤ n−1 < n. By the Fundamental Theorem

of Invertible Matrices, an n × n matrix B is invertible iff rank(B) = n.

Thus, by contrapositive, In + ~Xi
~Yi

T
+ ~Xj

~Yj
T

is noninvertible. Thus, also
by the contrapositive of the Fundamental Theorem of Invertible Matrices,

det(In + ~Xi
~Yi

T
+ ~Xj

~Yj
T

) = 0.
Therefore,
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0 = det(In + ~Xi
~Yi

T
+ ~Xj

~Yj
T

) (6)

= det

In + [ ~Xi
~Xj ]

 ~Yi
T

~Yj
T

 (7)

= det

I2 +

 ~Yi
T

~Yj
T

 [ ~Xi
~Xj ]

 (8)

= det

([
1

0

0

1

]
+

[
0

~Yj
T ~Xi

~Yi
T ~Xj

0

])
(9)

= det

([
1

~Yj
T ~Xi

~Yi
T ~Xj

1

])
(10)

= 1− (~Yi
T ~Xj)( ~Yj

T ~Xi). (11)

Equation (8) follows from Lemma 5.5, (7) and (9) from the factorization
of matrix products, and the rest from basic matrix arithmetic.

Thus, (~Yi
T ~Xj)( ~Yj

T ~Xi) = 1. Note that both ~Yi
T ~Xj and ~Yj

T ~Xi are of
dimension 1×n∗n×1 = 1×1, and thus are scalars. And since all the entries

in these matrices are 0s and 1s, this implies that ~Yi
T ~Xj = 1 for all i 6= j.

Therefore, by the definition of Y X, we can conclude that

Y X =


~Y1

T

...

~Yn
T

 [ ~X1 . . . ~Xn]

= [ ~Yk
T ~Xl]

= [bij ], where bij =

{
1 for i 6= j
0 otherwise

= Jn − In

= XY

Thus, X commutes with Y . By definition, it also commutes with X and
In. Thus, X commutes with Y X + In = Jn. A matrix commutes with Jn iff

its row and column sums are all equal (since XJn =
n∑

i=1

rows of X ∗ 1 and
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JnX =
n∑

i=1

1 ∗ columns of X). Thus, XJn = JnX = r ∗ Jn for some scalar

r ∈ Z+.
A parallel argument shows that Y Jn = JnY = s ∗ Jn for some scalar

s ∈ Z+.
Therefore,

(rs)Jn = (XY )Jn

= (Jn − In)Jn

= J2
n − Jn

= nJn − Jn

= (n− 1)Jn

rs = n− 1

Thus, XY = Y X, and there exist r, s ∈ Z+ with rs = n − 1 such that
XJn = JnX = rJn and Y Jn = JnY = sJn.

Now we have all the ingredients for the proof of the Theorem 4.1, restated
in graph theoretical terms below:

Theorem 5.7 (The Divorce Theorem). For n ≥ 2, let M = {m1, . . . ,mn},
W = {w1, . . . , wn}, and E = {miwj ∈ M ×W |i 6= j}. If B = B(M,W,E)
is a bipartite graph, then bp(B) = n.

Furthermore, if (X1, Y1), . . . , (Xn, Yn) is an exact biclique partition of B,
then there exist r, s ∈ Z+ such that

a) rs = n− 1

b) |Xi| = r and |Yi| = s for each i = 1, . . . , n.

c) Each element of M is in exactly r of the Xi and each element of W is in
exactly s of the Yi.

d) For i 6= j, there exists exactly one 1 ≤ k ≤ n such that mkwk ∈ Xi × Yj .

Proof. Let (X1, Y1), . . . , (Xp, Yp) be a biclique partition of B. By Lemma 5.4,
bp(B) = n, proving the first part of the theorem.

Let X be the n×p matrix whose ith column is ~Xi, and let Y be the p×n

matrix whose ith row is ~Yi
T

. By Lemma 5.4, XY = A = Jn − In. Because
p = n (making (X1, Y1), . . . , (Xp, Yp) an exact biclique partition), Lemma 5.6
applies and there exists r, s ∈ Z+ such that rJn = XJn, sJn = Y Jn, and
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rs = n− 1, where r = |Xi| and s = |Yi|. Thus, we have proven Parts a) and
a) of the second part.

Now, also pulling from Lemma 5.6, we know that XJn = rJn = Rn =
[rkl], where rkl = r for all k, l ≤ n. Thus, XJn = [rkl], and so

rkl = XkJ l (where Ak = kth row of A)

=

p∑
i=1

xkijil

=

p∑
i=1

xki ∗ 1

=

p∑
i=1

xki

= r.

Thus,

p∑
i=1

xki = r. And since every xki is either 0 or 1, it follows that

given any mk ∈M , mk is an element of exactly r of the Xis.
Furthermore, Lemma 5.6 tells us that JnY = sJn = Sn = [skl], where

where skl = s for all k, l ≤ n. A parallel argument will show that given any
wl ∈W , wl is an element of exactly s of the Yis. Therefore, we have proven
Part c) of the second part.

Finally, consider the matrix Y X. By Lemma 5.6, we know that Y X =
XY . Thus,

A = Y X

=


~Y1

T

...

~Yn
T

 [ ~X1 · · · ~Xn]

= Jn − In

Notice, then, that for any entry of A = [aij ],

aij = ith row · jth column

= ~Yi
T · ~Xj

= 1 for i 6= j.
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Since ~Yi
T · ~Xj =

n∑
k=1

yikxkj , this implies that
n∑

k=1

yikxkj = 1 for i 6= j.

Now, since we are only dealing with (0, 1)-matrices, every yikxkj can

be only 0 or 1. Therefore, we know that
n∑

k=1

yikxkj = 1 if and only if

yikxkj = 1 for exactly one 1 ≤ k ≤ n. Furthermore, this will only occur

when yik = xkj = 1. Therefore, by the definition of ~Yi
T

and ~Xj , mk ∈ Xj

and wk ∈ Yi for exactly one 1 ≤ k ≤ n for each i 6= j. Recalling our
interpretation of the vectors from before, this means that given any two
parties, the union of the men from one set and the women from the other
will contain exactly one estranged couple. Therefore, we have proven Part
d) of the second part, and we have proven Theorem 5.7.

There are a couple of interesting consequences of the Divorce Theorem.
First, if n = p + 1 for some prime p, notice that n− 1 is prime. Therefore,
the only two possible values of r and s are 1 and n−1, and so only two exact
biclique partitions are possible: the ones that correspond to the Harem and
Belle of the Ball arrangements from the original example. On the other
hand, if n − 1 is composite, other arrangements may possible (as with the
Double-Blind Date example). But whatever the value of n, the Yenta will
end up paying for exactly n parties when minimizing her cost.

6 Conclusion

Now, at last, the mathematical journey of the Wise Yenta comes to an end.
We have followed her tale both through managing marriage and dealing with
divorce, using graph theory to help bring happiness to others. But the story
does not really end at the altar. The mathematics we have examined is
actually quite versatile and helpful in many other disciplines. For instance,
not only did the Yenta herself originate in a physics article, but the Marriage
Theorem has been used for years in such applications as matching doctors
to residency positions. More recently, the 2012 Nobel Prize was recently
awarded to a pair of economists working on a variation of the Marriage
Problem, incorporating the idea of match stability–that is, how to find a
match most likely to succeed given the individual preferences of the people
involved.

Furthermore, notice that while both of the Wise Yenta Theorems were
ostensibly graph theory problems, each of the proofs made use of a different
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mathematical technique or discipline. In fact, the very idea of mathemat-
ical ‘disciplines’ is misleading: if nothing else, this paper shows us that
mathematics is not a patchwork quilt. It is a richly embroidered tapestry,
and knowledge of other mathematics can be extremely useful in solving the
current problems.
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