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1 A Motivation for Complexity Theory

We commonly speak about computers as “problem-solving machines” capable of
performing thousands or even millions of operations in a second, and therefore,
in terms of time efficiency, being a world apart from humans. In many settings,
this characterization is more or less accurate, but there are two reasons, intri-
cately related and equally important, why we should not let it be our final word
on the subject. First, computers require programs in order to run, and those
programs must be written by humans. Of course, these programs are no more
than algorithmic solutions to problems that have been translated, one way or
another, into a code that a machine can read. Thus, to take best advantage
of the great speed that computers promise, humans somewhere along the line
must have a complete understanding of the problem and the method of solution.
Second, algorithmic solutions themselves are possessed of some measure of effi-
ciency, which varies even within solutions to the same problem. Since humans
may be more or less skilled at writing algorithms, this fact should come as no
surprise, but it is also true that the specific problem to be solved has a bearing
on the maximum possible efficiency of an algorithmic solution.

Complexity theory is the study of problems and algorithms. In the strictest
sense, it can be divorced from computers entirely, but the existence of the digital
computer gives us some extremely useful common ground from which to speak
about algorithmic problems, because it is for the sake of digital computing that
the vast majority of algorithms are developed. When a large computing project
is undertaken, efficiency is a major concern. What complexity theory provides is
an intuitive measurement scheme for an algorithm’s efficiency, but beyond that,
it yields results that can tell us that a problem simply does not have an efficient
solution. While not exactly a cause for great rejoicing in applied settings, such
results can prevent us from wasting resources looking for a solution that we’ll
never find, and cause us to think more carefully about ways in which we can
safely restrict the scope of the problem such that an efficient solution might
become possible.
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1.1 A Problem That (We Suspect) Lacks an Efficient So-
lution: Boolean Satisfiability

In general, the satisfiability problem asks: given a logical formula using only
Boolean variables and the operators AND, OR, and NOT, is there a way to
assign values to the variables such that the whole formula evaluates to ‘true’?

CNF stands for “conjunctive normal form,” which specifies that the variables
must be grouped in a way such that the entire formula is a conjunction - clauses
connected by AND - of disjuncts, which are individual variables connected by
OR. We use the term literal to denote either a variable or that variable’s
negation, so that we can avoid cluttering up our notation with NOTs. Thus we
can express the general conjunctive normal form more compactly as

(b1,1∨b1,2∨...∨b1,l1)∧(b2,1∨b2,2∨...∨b2,l2)∧...∧(bk,1∨bk,2∨...∨bk,lk) =
k∧

i=1

li∨
j=1

bi,j

where k is the number of clauses, li for i = 1, ..., k is the number of literals in the
ith clause, and bi,j is the jth literal in the ith clause. Because each clause must
be true on its own in order for the whole expression to be true, CNF is often
easier to work with than some arbitrary Boolean formula. Fortunately, it can be
shown that any Boolean expression can be equivalently written in conjunctive
normal form.

Suppose we have a Boolean expression F with r variables a1, a2, ..., ar We
want to show that F is equivalent to an expression of the form

G =
k∧

i=1

li∨
j=1

bi,j

where the bi,js are literals - the positive or negative forms of the ai’s. By
“equivalent” we mean that F is true exactly when G is true.

Let Θ be the set of all 2r possible assignments of F ’s variables. Then for
any assignment θ ∈ Θ, and for 1 ≤ j ≤ t, we define

αθ,j =
{

aj if θ sets aj to be true
āj otherwise

We have now tailor-made a set of variables such that
∧t

j=1 αθ,j is only sat-
isfied by the assignment θ. Let S ⊆ Θ be the set of all assignments that satisfy
F , and assume that S has k elements. Then

F ′ =
t∧

j=1

αθ1,j ∨
t∧

j=1

αθ2,j ∨ ... ∨
t∧

j=1

αθk,j =
∨
θ∈S

t∧
j=1

αθ,j

is satisfied exactly when one of its disjuncts is satisfied. But this can only
happen for an assignment θ ∈ S, so F ′ is satisfied exactly when F is satisfied -
the two are equivalent.
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Using the same method, we can now state that F̄ (not-F ) is equivalent to
an expression of the form ∨

i

∧
j

bi,j

By DeMorgan’s laws, F is then equivalent to∧
i

∨
j

b̄i,j

From now on, we can use the fact that for any Boolean expression, there
exists an equivalent Boolean CNF expression.1

Developing an algorithm that returns a correct answer for every possible
instance of the CNF-Sat problem seems like a daunting task. Many other famous
mathematical problems, such as the traveling salesman problem or the subset-
sum problem, defy us to come up with a solution procedure that works every
time. We might call these problems “hard.” The study of complexity theory
starts with an attempt to refine this notion of hardness, both in absolute terms
- how long does it take to solve the problem? - and in relative terms - which
problems can be considered harder than others?

2 Some Definitions

In order to talk about classes of algorithmic problems, we need to have a model of
computation that is fairly intuitive and easy to work with. The standard model
in complexity theory is the Turing machine (TM), a theoretical computing
device that has three parts:

• A tape that is infinitely long in one direction, and is divided into cells.
Each cell can hold one symbol, and in general some of the cells will be
written on before computation begins; those symbols are the TM’s input.
The symbols that can be used by a TM can be chosen for our convenience
based on the particular problem we’re talking about, but the set of symbols
must be finite, and we call it Σ, the TM’s alphabet. The only other
restriction we place on Σ is that is must contain the blank symbol σ0.

A further note about Σ: we define Σ∗ to be the set of all sequences that
can be made using the symbols in Σ. This concept is useful when, for
example, we want to talk about every possible input that a given TM
could receive.

• A head that can read the symbols printed on the tape and can also erase
them and write new ones. The head and the tape together serve much
the same function as the hard drive in a modern computer. The TM head
can only operate on one tape cell at a time, so it is also capable of rolling
the tape left and right to reach other cells.

1Martin pp. 510-12
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• A register that can be in any of a finite number of states. This is the
most abstract part of the model, but it can be understood to function as
the memory of the TM. The set of possible states of a TM is called Q. Q
always contains a starting state q0. Since the problems we’ll be concerned
with are all decision problems, requiring a yes-or-no answer, we’ll assume
that for all TMs, Q also contains two halting states, qaccept and qreject.
If all goes well, the only way that computation can end is with the TM
in one of the two halting states, thus giving us either an affirmative or
negative answer.

A TM runs step by step through a program, which can be formally repro-
duced as a transition function

δ := Q× Σ → Q× Σ× {L, S, R}.

In other words, when a new step of computation begins, the TM’s register is
in some state q ∈ Q, and its head is reading some symbol σ ∈ Σ from the tape.
On the basis of those two things, the register will change to a new state q′ ∈ Q,
and the head will overwrite σ with a new symbol σ′ ∈ Σ, then move the tape
Left or Right, or Stay reading the same cell. Note that it is perfectly valid for
the register to remain in state q, and for the head to avoid actually changing
the tape by simply overwriting σ with σ.2

Based on our experience with real-life computers, our intuition tells us (cor-
rectly) that a TM with the above description operates deterministically. Given
the same input more than once, not only will the result of the computation will
be the same every time, but the intermediate steps will be exactly the same and
traversed in exactly the same order. This kind of consistency is often touted as
an advantage that computers have over humans, but in examining complexity
classes we quickly come across problems where we might desire a TM that is a
bit less consistent.

A nondeterministic TM is defined in exactly the same way as a deter-
ministic TM, except that at each step of computation (in other words, when
evaluating δ(q, σ)), the TM has the potential to transition into a number of dif-
ferent states, write one of a number of symbols to the tape, and move in more
than one way. Writing a transition function for a nondeterministic TM is more
awkward than it is for a deterministic one. Instead of the nice form above we
must write

δ := Q× Σ → P(Q× Σ× {L, S, R})

to indicate that when going from one step to the next the nondeterministic TM
selects from a subset of the possible combinations of register states, symbols,
and tape movements. Note that the fact that the range is a power set means
that ∅ might be “returned” by δ - that is, δ need not be defined for every pair
(q,σ). If a TM encounters such a pair, it will simply be stuck. In practice,
such crashes need not worry us as long as we construct our algorithms carefully.

2Wegener pp. 22
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Because of the cumbersome notation we prefer to specify a nondeterministic
TM T using the following 4-tuple:

T = (Q, Σ, q0, δ).

We don’t know for sure what a nondeterministic TM will do at each step,
we know only the set of possible things it could do. To make the notion a bit
more concrete, nondeterminism often manifests itself as the ability of the TM
to “guess,” rather than follow a painstakingly specified algorithm.

Note that a nondeterministic TM is no more capable than a deterministic
one. This claim is easily justified by noting that we could program a deter-
ministic TM to run through, in some order that we would specify, every single
computation that it is capable of. Even though we can’t predict the configura-
tions that a nondeterministic TM will go through in its computation, we can
be assured that if we run through all of them using a deterministic TM, we will
eventually obtain the same result. Of course, executing this exhaustive simu-
lation would in most cases take an extremely long time, but the salient point
is that there is no problem solvable by a nondeterministic TM that is not also
solvable by its deterministic counterpart.3

In fact, according to Church’s Thesis, the TM model can be made to suit
any algorithm we could possibly come up with. This is an extremely important
point, because it means that no matter how fast or capacious real-life digital
computers become, they will never be capable of solving an algorithmic problem
that a TM could not also be programmed to solve. Church’s Thesis is not
rigorously provable, but evidence in its favor abounds, and I will make use of
it in this paper for the sake of space. Were I not to rely on Church’s Thesis, I
would have to show explicitly that each algorithm I use can be translated into
a TM algorithm, and such proofs would be tedious and uninteresting. As I was
invited by every book I used for this paper, I invite my reader to make this one
leap of faith and trust that the TM model is not only adequate for this paper,
but is the only model that the field of complexity theory should ever need.

2.1 Big-O Notation

We want a classification of algorithmic problems according to the amount of
time each one takes to solve. We now have a standardized notion of time: TM
computation steps. But a problem remains that will become clear by way of an
example.

Suppose we use the following algorithm to determine if a given natural num-
ber y is prime: define z = 2. If y

z has remainder 0, then halt computation.
Otherwise, add 1 to z. Repeat this process until the division produces a zero
remainder, in which case we conclude that y is composite, or until z exceeds√

y, in which case we conclude that y is prime. Church’s Thesis assures us that

3Homer & Selman pp. 31-3
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there exists a TM that can perform this computation, and it’s easy to believe
that this algorithm will always yield the correct decision - after all, it checks
every possible case before concluding that y is prime. But how many steps will
the TM take to reach a halting state? Clearly, that depends on the magnitude
of y.

In fact, we will never respond to the question “how many steps will the al-
gorithm take?” with a number. Instead, we answer with a time-complexity
function τ , written in terms of the size of the TM input. Unfortunately, com-
paring functions directly can get messy. If we have two problems, A and B,
we want to be able to make a conclusion about them that is stronger than
“τA(n) > τB(n) for some input sizes n, but not all of them.” To achieve this
goal, we compare bounds.

Suppose we encounter an algorithmic solution to a problem such that τ(n) =
5n3 + 29n2 + 17n + 4, where n is the size of the input. In this case we say that
τ(n) = O(n3). This statement, written in “big-O” notation, formally states
that there exist constants C and n0 such that for all n > n0, τ(n) ≤ Cn3. In
other words, as we let n get large, the cubic term of τ(n) will grow at a much
faster rate than the other terms. It grows so much faster that for our purposes
we can forget about the other terms, and merely observe that there must be
a constant C such that Cn3 grows faster than 5n3. This is how we use big-O
notation to express bounds for time-complexity functions.

We’ve already seen how big-O notation disregards all but the most “pow-
erful” term of a time-complexity function, so all such functions that are cubic,
for example, will be indistinguishable from each other. In fact, the classifica-
tion system used in complexity theory doesn’t distinguish among polynomial
runtimes of any degree. All algorithms that can be executed by a TM with
polynomial worst-case runtime fall into one complexity class. In practice we are
only interested in two other broad classes of algorithms: those that run with
subpolynomial worst-case runtime (for example, O(logn)); and those that run
with exponential worst-case runtime (for example, O(cn) for some constant c),
and are associated with intractable problems.

2.2 Two Important Complexity Classes

The most famous complexity classes are P and NP; in fact the question of
whether or not P = NP is the most important open problem in the field of
complexity theory. These two classes contain the problems that are most in-
teresting and accessible to us with our current resources - that is to say, with
digital computers.

The class P, roughly speaking, contains all problems that we consider to
be efficiently solvable. Any problem that can be solved by a deterministic TM
with polynomial worst-case runtime is in P. Thus, a proof that a problem is in
P involves finding an algorithm for solving that problem that could be executed
by a deterministic TM in polynomial time.

The class NP can be thought of as containing all problems with solutions
that can be easily verified. The CNF-Sat problem, for example, is in NP be-
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cause it is easy to check whether a given variable assignment makes a Boolean
expression evaluate to “true.” More formally, a problem is in NP if there exists
a nondeterministic TM that can solve it with polynomial worst-case runtime (in
fact, NP stands for “nondeterministic polynomial”). An equivalent definition
of membership in NP is that there exists a deterministic TM which, given a
solution to the problem, can verify that the solution works, again in polynomial
time.4

We said above that nondeterministic TMs have the ability to “guess” while
solving problems, and this is an appropriate characterization because, unlike
for problems in P, we do not have any algorithm for NP problems that is more
efficient than guessing and checking. Herein lies the importance of the P ?= NP
problem: if in fact P = NP then we can be assured that there exist efficient
algorithmic solutions to problems like CNF-Sat, the Traveling Salesman prob-
lem, and integer factorization. That being said, we strongly suspect that P 6=
NP, but so far attempts at proof have been unsuccessful. Note, however, that
P is surely a subset of NP, because a nondeterministic TM can also solve any
problem that a deterministic TM can.

Two subclasses bear mentioning at this point. A problem is called NP-hard
if it is at least as hard as every problem in NP. Further, an NP-hard problem is
called NP-complete if the problem is itself in NP.5

2.3 Reductions

It should come as no surprise that proving that a problem is at least as hard as
every other problem in NP is itself a rather difficult task. Fortunately we are
assisted by polynomial-time Turing reductions, which we will refer to simply
as Turing reductions from now on because reductions that take longer than
polynomial time are not of interest to us here. Informally, a Turing reduction is
the process of mapping one problem onto another. In order to be more specific,
we introduce the concept of an oracle. An oracle is simply an algorithmic
“black box” for solving a problem. Such a thing can exist only in theory, but
we use it to ask the question “can we transform an instance of problem B into
one or more instances of problem A, which, if we assume the existence of an
A-oracle, we would then be able to solve?”

So, to perform a reduction, we write an algorithm for B that runs in poly-
nomial time with respect to the size of the input. We allow the algorithm to
call for the assistance of an A-oracle, as long as the number of calls it makes is
polynomially bounded. Every time the algorithm calls the A-oracle, it will have
to provide input, since the A-oracle is itself an algorithm. Thus we also require
that the size of the input in each call to the A-oracle is polynomially bounded.6

If such an algorithm can be constructed, we say that B is reducible to A.
We will see several reduction examples after proving our main result.

4Arora & Barak pp. 39
5Martin pp. 509-10
6Wegener pp. 44-5
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3 Cook’s Theorem

While Turing reductions can save us quite a bit of work when classifying prob-
lems, we still need to do some heavy lifting to prove that an NP-complete
problem exists at all. Specifically, our goal is to prove that the Boolean satis-
fiability problem (Sat) is NP-complete. Instead of doing so directly, however,
we’ll instead go through a proof that CNF-Sat is NP-complete, and then use
the method of Turing reduction to conclude that Sat is NP-complete.

To prove NP-completeness we must first prove that CNF-Sat is in NP. We
assume that we have a CNF expression F and a variable assignment θ. What
we need to show is that a TM can verify whether θ satisfies F in polynomial
time, once F has been encoded on the TM’s tape. At this point we should be
specific about the alphabet being used. Define

ΣCNF = {∧, w, w̄, 1, σ0}.

Our use of this alphabet will be made clear through an example. We encode
the Boolean expression

(w1 ∨ w2) ∧ (w̄2 ∨ w3 ∨ w4)

as
w1w11 ∧ w̄11w111w1111

with the bar notation indicating negation. We can omit a symbol for OR because
the literals within a clause are all joined by OR, so we only need to separate the
clauses with ∧. The use of unary notation instead of a more compact subscript-
writing method will simplify the question of how long the TM will take to read
the variables in F .

The TM follows a simple algorithm: starting at the beginning of a clause
(reading w or w̄), it identifies the first literal by reading until it reaches a non-1
symbol. If θ has made that literal true, then the TM reads over the following
symbols until it reaches a ∧, which marks the beginning of the next clause, at
which point it repeats the procedure. If the identified literal is not true under
θ, then the TM identifies and checks the next literal in the clause. If the TM
reaches the end of a clause without finding a true literal, it halts computation
in qreject, having found that θ does not satisfy F . Otherwise, the TM will
eventually reach a blank cell, in which case computation ends in qaccept (unless
it found that none of the literals in the final clause were true).

Using this algorithm, the TM head only needs to make one pass over the
formula encoded on the tape. Since we express time complexity in terms of the
size N of the input, we then say that this verification algorithm runs in O(N)
time, which places CNF-Sat comfortably in NP.

Now we need to prove that CNF-Sat is NP-hard. We observe that for every
problem in NP there exists a nondeterministic TM T = (Q,Σ, q0, δ) that solves it
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in polynomial time. Fix T , and choose a polynomial p(n) such that τT (n) ≤ p(n)
for all n, where n is defined to be |x|, the size of T ’s input. We also define
N = p(n), our upper bound on the time complexity of T .

Giving the name CNF to the set of all Boolean CNF expressions, we want
to show that there exists a function

g : Σ∗ → CNF,

which takes TM inputs and returns Boolean expressions, such that the following
two conditions are fulfilled.

• For any x ∈ Σ∗ that is the input for T , T halts in an accepting state if
and only if g(x) is a satisfiable Boolean expression.

• The reduction of the problem computed by T to the problem CNF-Sat
can be performed in polynomial time.

We define a configuration of a nondeterministic TM to be a 3-tuple (q, σ, n) ∈
Q×Σ×N, representing a computation step in which the TM is in state q reading
the symbol σ from the nth cell of the tape. We then observe that, even though
we cannot make predictions about the computation steps of a nondeterministic
TM, we can view its problem-solving process as a sequence of configurations.
Further, we can make judgments about whether such a sequence, or computa-
tion path, is valid or not by examining the set of possible transitions at each
step of computation. We introduce the relation ` on the set of configurations of
a TM. C ` C ′ implies that a TM can go from configuration C to configuration
C ′ in one step. We then call C and C ′ consecutive.

We can now define a valid computation path as one that begins with C0 =
(q0, σ, 0), and in which, for every configuration Ci, Ci ` Ci+1. The notion of a
valid computation path gives us a goal to work for in constructing g: we desire
that for any input x, g(x) is satisfiable if and only if there is a valid computation
path from C0 = (q0, x0, 0) to a configuration in which T is the state qaccept. The
easiest way to construct such a g will be to force the CNF expression that it
produces to be an expression that we can associate with the TM itself.

We first require an indexing for all the states and symbols that could be used
by T . We’ll call the states

Q = {q0, q1, ..., qt−1, qt}

where t is the total number of states, q0 is the starting state, as before, and
qt−1 and qt are how we refer to the rejecting and accepting states, respectively.
Similarly we’ll call the symbols

Σ = {σ0, σ1, ..., σs}

where s + 1 is the number of symbols used by the TM, and σ0 is the blank
symbol. Using this notation we express the starting state of the TM’s tape -
that is, its input - as x = σa1σa2 ...σan

.
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To represent something as complicated as a TM using something as simple
as a Boolean formula will require a great many variables. We can divide the
variables we will require into three groups.

• For i = 1, ..., N and j = 0, ..., t, the variable Qi,j is true if and only if,
after the ith step, T is in state qj .

• For i = 1, ..., N and k = 0, ..., N , the variable Hi,k is true if and only if,
after the ith step, the tape head is reading the kth cell of the tape. Note
that it is possible for us to bound k because it is impossible for the TM
head, starting at cell 0, to go past cell N in N moves.

• For i = 1, ..., N and k = 0, ..., N , and l = 0, ..., s, the variable Si,k,l is true
if and only if, after the ith step, the symbol σl is printed in tape cell k.

We can now proceed to construct g(x), a conjunction of seven expressions.
As we examine the expressions in turn, we will verify that each one includes
a number of variables that is polynomially bounded. After examining each
expression we will conclude that encoding g(x) in the language of the TM will
require a number of cells that is still polynomially bounded.

1.

Q0,0 ∧H0,0 ∧ S0,0,0 ∧
n∧

k=1

S0,k,ak
∧

N∧
k=n+1

S0,k,0

The first expression represents the initial configuration of the TM. If this
expression is true, then all the following statements are true: After 0
moves, the TM is in state q0. The tape head is reading from cell 0, which
contains the blank symbol. Every cell k from the 1st to the nth contains
the symbol σak

, and every cell from the n + 1st to the Nth contains the
blank symbol.

This expression requires 3 + N variables.

2.
QN,t

This much simpler expression is true if and only if, after the Nth step, T
is in the accepting state.

3.

N−1∧
i=0

i∧
k=0

∧
j,l

(
(Qi,j ∧Hi,k ∧ Si,k,l) →

∨
m

(Qi+1,jm
∧Hi+1,km

∧ Si+1,k,lm)

)

for m = 0, ...,M

(j, l) varies over all pairs such that δ(qj , σl) 6= ∅

This expression represents the transition function δ(qj , σl) of T . In order
to better understand what the expression is saying, fix i, j, k, and l. The

10



left side of the implication specifies a configuration of T after step i. Then,
on move i + 1, T will transition into one of M configurations, where M is
constant for each configuration. The value of M depends on i, j, k, and l.
In other words, each of T ’s configurations might have a different number
of consecutive configurations.

Note that km can only take on values k− 1, k, or k + 1, because the head
position can shift by at most one cell in one step.

One might reasonably object that the Boolean OR on the right side allows
more than one configuration to be “true.” Expressions 5 and 6 will patch
this particular hole, since T will enter exactly one consecutive configura-
tion, even though we cannot predict which configuration it will be.

We’ll count the number of variables in this expression together with those
in Expression 4.

4.
N−1∧
i=0

i∧
k=0

∧
j,l

((Qi,j ∧Hi,k ∧ Si,k,l) → (Qi+1,j ∧Hi+1,k ∧ Si+1,k,l))

(j, l) varies over all pairs for which δ(qj , σl) = ∅

This expression serves as the complement to Expression 3, since it ad-
dresses all those pairs (j, l) for which Expression 3 was not defined. If after
the ith step T is in a configuration C such that its transition function eval-
uates to the empty set, we state equivalently that C has no consecutive
configurations. The machine has essentially crashed, and the configura-
tion remains unchanged after the i + 1st step. In fact, T will be unable
to change its configuration ever again (though this expression need not
reflect that).

We can count the number of variables for Expressions 3 and 4 together,
after taking care of a small difficulty. “→” is not a symbol in our CNF-
Sat language, and was included in these two expressions only in order to
make their purpose clear. Thus when the TM is actually writing out g(x),
each instance of the implication in Expression 3 should be written in the
logically equivalent form(

Q̄i,j ∨ H̄i,k ∨ S̄i,k,l ∨Qi+1,jm

)
∧
(
Q̄i,j ∨ H̄i,k ∨ S̄i,k,l ∨Hi+1,km

)
∧
(
Q̄i,j ∨ H̄i,k ∨ S̄i,k,l ∨ Si+1,k,lm

)
.7

A similar transformation can be performed for the implication of Expres-
sion 4, except that the subscript m is not necessary. Note that the two
expressions are in proper conjunctive normal form, and that our “trans-
formation” does not affect the polynomial time complexity of g(x).

7Homer & Selman pp. 135
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There are st total pairs (j, l), each of which is accounted for exactly once,
either in Expression 3 or in Expression 4. i takes on one of N possible val-
ues in each expression, and k takes on a number of values that is bounded
by N . Thus the number of times we need to write each expression is
bounded by stN2. Fortunately, s and t are constant for a given TM, and
M for each configuration is constant as well, so the number of times we
need to write each expression is O(N2).

5.
N∧

i=1

t∨
j=0

Qi,j ∧
∧
h6=j

Q̄i,h


With this expression we begin to address one of the shortcomings of Ex-
pression 3, and enforce a vital rule of TMs. At every step, T is in exactly
one state, or to be more specific, T is in a state qj , and for all h 6= j, T is
not in the state qh.

i takes on one of N values, and j takes on one of t + 1 values, which is a
constant for a given TM. So each Qi,j must be written tN times, and the
each Q̄i,h must be written t(t− 1)N times. Both of these are O(N).

6.
N∧

i=0

i∧
k=0

(∨
l

Si,k,l

)
∧

∧
l1,l2

(S̄i,k,l1 ∨ S̄i,k,l2)


for (l1, l2) such that l1 6= l2

Here we remedy another source of configurations that would cause the
expressions so far to evaluate true, but would in fact be completely illegal
by TM rules. At every step, and for all k = 0, ..., N , the kth cell contains
at least one symbol, and never contains two symbols.

Each Si,k,l must be written a number of times bounded by sN2, and each
S̄i,k,l1 ∨ S̄i,k,l2 must be written a number of times bounded by s(s− 1)N2.
Both of these are O(N2) because s, the size of the set Σ, is constant for a
given TM.

7.
N∧

i=0

i∧
k=0

s∧
l=0

(
H̄i,k ∧ Si,k,l → Si+1,k,l

)
Finally, the TM can only change the cell being read by the head. Therefore
for any step i and any cell k containing the symbol σl, if the head is not
reading cell k after the ith step then cell k will still contain σl after the
i + 1st step.

12



Again, T cannot actually understand “→”, so it will instead write the
logically equivalent clause

Hi,k ∨ S̄i,k,l ∨ Si+1,k,l

This clause must be written a number of times bounded by sN2, which is
O(N2).

We now have seven expressions that serve as our conjuncts to form
∧7

i=1 gi(x) =
g(x). g(x) will be true if and only if there exists a valid computation path from
C0 to a configuration that has T in the accepting state. Further, we have a
polynomial bound on the amount of time it will take to write out each part of
g(x). Since the sum of polynomials is itself a polynomial with degree no higher
than the degrees of the summands, we can say that writing out all of g(x) has
time complexity O(N2).8

4 The Fruit of Cook’s Theorem: Some Turing
Reductions

Now that we have a problem that is surely NP-complete - that is, contained in
the class of the hardest NP problems - the task of proving that certain other
problems in NP are also NP-complete is much easier. We merely need to show
the existence of a Turing reduction from CNF-Sat to another NP problem,
meaning that CNF-Sat is no more difficult than that problem, implying that
the other problem is also NP-complete.

4.1 Reduction of CNF-Sat to Sat

Though the restricted forms of Sat are most often nicer to work with, we would
still like to have a proof that the most general form of the problem is NP-
complete. We will show that Sat accords with our second definition of mem-
bership in NP by assuming that we have both a Boolean expression f and an
assignment θ that satisfies it, and then proving (by providing an algorithm) that
a deterministic TM could verify the satisfying assignment in polynomial time.

The first step in the algorithm is to run through the formula once, replacing
all the literals made true by θ with a 1 and all the ones made false with a 0.
This step only needs to be performed once and takes O(n) time. The next step
is to find pairs of digits connected by operators and replace them with a single
digit, according to the rules of logic. For example,

0 ∧ 1 becomes 0

1 ∧ 1 becomes 1

1 ∨ 0 becomes 1
8Martin pp. 512-17
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This step is complete when there is only one digit left, at which point we decide
that θ satisfies f if and only if that lone digit is a 1. Note that every time this
operation is performed the total number of digits on the tape is reduced by 1,
thus it must be performed n − 1 times. Thus the total time complexity of the
verification algorithm is O(n) and Sat is in NP.

At this point we do not actually need a formal reduction to show the NP-
completeness of Sat. Rather, it will suffice to observe that because every CNF-
Sat problem is also a Sat problem, CNF-Sat is a restriction of Sat. Thus Sat
can be no less complex than CNF-Sat. By showing that Sat is in NP, we have
shown that it is also no more complex than CNF-Sat. It then follows that Sat
is also NP-complete.

Note that this result implies that there exists a polynomial-time algorithm
that will transform any Sat expression into CNF-Sat. Earlier, we showed a
transformation, but because it depended on an enumeration of all possible truth
assignments for a Boolean formula, it ran in exponential time. Because both
problems are NP-complete, we now know that a more efficient transformation
must exist.

4.2 Reduction of CNF-Sat to 3-Sat

We perform this reduction mainly for the sake of following Turing reductions.
3-Sat is a special case of CNF-Sat where each clause contains exactly three
literals. Thus we need to transform an arbitrary CNF expression F into a 3-Sat
expression G.

Obviously, if a clause of F already has three literals, we can leave it alone.
For clauses with one or two literals, we repeat a literal within the clause to bring
it up to three, which does not change that logical properties of F at all. The
more involved case is when a clause c has k > 3 literals:

c = w1 ∨ w2 ∨ w3 ∨ ... ∨ wk

We observe that c is satisfied if even one of the wis is true. We need to split the
variables of c into new clauses in such a way that the conjunction as a whole
retains this property. The splitting will involve creating a new set of variables
{y1, y2, ..., yk−3}. We then create

d = (w1∨w2∨y1)∧(ȳ1∨w3∨y2)∧(ȳ2∨w4∨y3)∧...∧(ȳk−4∨wk−2∨yk−3)∧(ȳk−3∨wk−1∨wk).

We need to show that c is satisfied if and only if we can assign truth values
to the yis such that d is satisfied. After confirming this, we can safely proceed
to replace every clause of F with a number of 3-Sat clauses, for the purpose of
submitting the entire expression to a 3-Sat oracle.

(⇒) Assume that c has a satisfying assignment. Since c is a disjunction of
literals, we know that one of the wis must be true - call one of them wT . For all
i ≤ T − 2 (that is, in every clause to the left of the one containing wT ), we let
yi be true, and for all the rest we let yi be false. In this way every clause of d
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up to the one with wT is surely satisfied. For i > T −2, we let yi be false. Since
all of the clauses to the right of the one containing wT contain the negation of
one of these yis, they are now satisfied as well, so d as a whole is satisfied.

(⇐) Assume that we have a variable assignment θ (for both the wis and
the yis) that satisfies d. In order to show that c must also be satisfied by this
assignment, we need to show that one of the wis is by itself sufficient to satisfy
one of the clauses of d. Let j be the smallest possible index value such that θ
makes yj false. Then the clause containing yj is not satisfied by a y variable,
because we stipulated that yj−1 is true, making ȳj−1, the other variable sharing
a clause with yj , false. But since we assumed that the clause is satisfied, wj+1

must be true. This further implies that θ satisfies c.

Once we have made this transformation from a CNF formula to a 3-Sat
formula, we need only make one call to a 3-Sat oracle to get an answer, so the
number of calls to the oracle is clearly polynomially bounded. Within the newly
generated 3-Sat formula, there are not even three times as many literals as there
are in the original CNF formula F , so the size of the input to the 3-Sat oracle, in
terms of the size of F , is also polynomially bounded. Finally, aside from calling
the 3-Sat oracle, the only thing that our CNF-Sat algorithm does is transform
the clauses of F one at a time into clauses that fit the form we defined above.
Each clause only needs to be considered once so the time complexity of this
process is O(l), where l is the number of literals in F . So, all three polynomial
bound requirements are satisfied, giving us the reduction CNF-Sat ≤T 3-Sat.

The reduction gives us a lower bound on the complexity of 3-Sat, but alone
is not enough to prove NP-completeness, because we do not yet know that 3-Sat
is not any more complex than CNF-Sat, i.e., that it is in NP. Fortunately we
can use a trick similar to the one we used in the previous proof - we merely need
to observe that 3-Sat is a restriction of CNF-Sat and must therefore be in NP.
Thus 3-Sat is NP-complete.9

4.3 Reduction of 3-Sat to Clique

Since graph theory appears to be in vogue among senior exercises this year, we
would be remiss if we failed to examine some of the many NP-complete problems
that are stated in terms of graphs.

First, some definitions. We specify a graph G by the pair (V,E), where V
is a set of vertices and E is a set of edges. In turn, an edge is a pair of vertices
(v, v′). We then say that an edge is incident to the vertices v and v′, or that
v and v′ are connected.

A clique (also known as a complete subgraph) is a set of vertices within
which every vertex is connected to every other vertex.

Now we can state the clique problem: given a graph G and an integer k, is
there a subset of G that is a clique containing k vertices? What we need to find

9Wegener pp. 51-2
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is a polynomial-time algorithm for turning an instance of 3-Sat into an instance
of the clique problem. Let f be an arbitrary 3-Sat formula.

It seems reasonable to represent the literals of f by vertices in G. Let m be
the number of clauses in f - then G will have 3m vertices. We will index the
vertices such that the vertex vi,j represents the jth literal in the ith clause of f .

Now we need to decide which vertices to connect with edges. To begin with,
for all i, the vertices vi,1, vi,2, and vi,3 will not be connected. Further, we will
not connect two vertices if they cannot be true at the same time. Of course,
this only happens when the two vertices represent literals that are each others’
negations. All other pairs of vertices - that is, those pairs in which the two
literals represented are not in the same clause and can be true at the same time
- will be connected by an edge. We must now prove that such a graph contains
a clique of size m if and only if f is satisfiable.
(⇒) Suppose we have constructed a graph G according to the above rules, and
G contains a clique of size m. We will denote by V the subset of G’s vertices
that form the clique. Since we stipulated that vertices representing literals
from the same clause are never connected by edges, the clique must contain a
representative vertex from every clause of f .

To prove that f is satisfiable, it suffices to produce a satisfying assignment.
Let θ = (a1,1, a1,2, ..., am−1,3, am,1, am,2, am,3) be an assignment to the variables
of f such that ai,j = 1 if vi,j is in V , and is 0 otherwise. Since V contains
one representative vertex from each clause of f , θ makes one variable from each
clause of f true. But this is exactly enough for θ to be a satisfying assignment
of f , so f must be satisfiable.
(⇐) Let θ be a satisfying assignment of the variables in f . Then each clause of
f contains at least one literal that has been made true by θ. Since the order
of the literals within a clause is irrelevant, assume without loss of generality
that θ makes the first literal in each clause true. Then for all 1 ≤ i < j ≤ m,
the vertices vi,1 and vj,1 are connected by an edge. We know this because they
represent literals from different clauses, and they cannot contradict each other
because we were given θ, which made them all simultaneously true. There are
m of these vertices, and each is connected to every other, forming a clique of
size m.

We do not need to go into detail about how we would create a TM rep-
resentation of the graph G on a linear tape (and we can appeal to Church’s
Thesis to assert that such a representation is possible). What is important to
observe is that the TM representation of one vertex of G would differ in length
from that of another vertex by no more than a constant, just like our variables
from Cook’s Theorem that were represented by an x followed by a string of 1s.
The same can be said of edges, which are simply unordered pairs of vertices.
Thus, to verify that the construction of a graph based on f can be performed
in polynomial time, we need only note that the graph contains 3m vertices and
at most

(
3m
2

)
= O(m2) edges, so the size of the input to a clique-oracle is poly-

nomially bounded. Finally, once we have constructed G, we need only call the
clique-oracle once - it will either find a clique or tell us that none exists. Thus
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3-Sat is Turing reducible to Clique.10

4.4 Reduction of Clique to Vertex Cover

Continuing with graph theory, we examine the vertex cover problem: Given
a graph G and a positive integer k, is there a subset S, containing k of G’s
vertices, such that all edges in G are incident to at least one vertex in S?

A polynomial-time transformation of an instance of the clique problem into
an instance of the vertex cover problem proceeds as follows. Let (H, j) be an
instance of the clique problem, with the graph H = (V,EH) and a desired clique
size j. Construct a new graph G = (V,EG) with the same vertices as H, but
with precisely the opposite edges - that is, if two vertices are connected in H,
they are not connected in G, and if they are not connected in H, there is an
edge between them in G. Let k = |V |− j, where |V | is the number of vertices in
H (and G). We claim that H contains a clique of size j if and only if G contains
a vertex cover of size k.

(⇒) Assume that {v1, v2, ..., vj} is a clique in H. Then none of the vi’s are
connected in G as we constructed it. That means that every edge of G must be
incident to a vertex in the set V \ {v1, v2, ..., vj}. This set contains |V | − j = k
vertices and is a vertex cover of G.

(⇐) Assume that {u1, u2, ..., uk} is a vertex cover of G. Because every edge
in G is incident to a vertex in {u1, u2, ..., uk}, any pair of vertices that we could
choose from V \{u1, u2, ..., uk} are not connected by an edge in G. Because of the
way we constructed G, this means that every pair of vertices in V \{u1, u2, ..., uk}
is connected by an edge in H. The set V \{u1, u2, ..., uk} has |V |−k = j vertices,
and is therefore a clique of size j in H.11

To complete the reduction we show that the transformation can be carried
out in polynomial time. Starting with the graph H, let n = |V | be our mea-
surement of the size of the input. We list all possible edges connecting vertices
in V . Since there are

(
n
2

)
possible edges, this takes O(n2) time. We then read

through the edges of H and delete those edges from our exhaustive list, which
takes O(n) time. We are left with the vertices of H (which are also the vertices
of G) and the edges of G. Thus the construction of G can be done in polynomial
time.

4.5 Reduction of 3-Sat to 3DM

Moving on from graph theory, we approach a more difficult reduction, proving
that the 3-dimensional matching problem is NP-complete. 3DM centers around
three disjoint finite sets W , X, and Y , each of which contains q elements. We’ll
call these three sets dimensions. We take R ⊆ W ×X × Y , a set of 3-tuples
that is fixed in a given instance of 3DM. We are interested in whether or not
there exists a subset M of R that is a matching. A matching is a set that
fulfills the following conditions:

10Wegener pp. 56-7
11Martin pp. 520
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1. It has q elements.

2. No two of its elements have any coordinates in common.

As a quick example, let W = {1, 2, 3}, X = {A,B,C}, and Y = {♥,♣,♠}.
Then M = {(1, A,♥), (2, B,♣), (3, C,♠)} is a matching subset of W ×X × Y .
This matching isn’t hard to find, because we did not impose a restricting set
R. If we did so such that, say, (1, A,♥) /∈ R, we would have to do a bit more
shuffling of the elements of W,X, and Y before finding a matching set, and one
can easily imagine that the most interesting instances of 3DM occur when R is
very restrictive indeed.

It’s not hard to show that 3DM is in NP. Given a proposed matching M ⊆ R,
we need to check that it has q elements, which can be done in linear time.
Then we need to check that none of the coordinates among the elements of M
are duplicates. For each dimension, this check requires

(
q
2

)
= O(q2) pairwise

comparisons. Thus, verification of a solution to an instance of 3DM can be
performed in polynomial time, which means that 3DM is in NP.

Now we proceed with a polynomial-time transformation from 3-Sat to 3DM.
We start with a set of variables U = {u1, u2, ..., un}, grouped into a set of clauses
C = {c1, c2, ..., cm}, forming the 3-Sat expression F . First, we have to create
the three dimensions. The elements of the dimensions may seem bizarre at first
- we will go through the purpose of each of them in turn.

W = {ui,j , ūi,j : 1 ≤ i ≤ n, 1 ≤ j ≤ m}

Note that these ui,j ’s are not the variables of F ! There is a ui,j and a ūi,j for
every combination of variables (i’s) and clauses (j’s) in F , even when a given
variable does not appear in a given clause.

X = A ∪ SY ∪GY

where we set

A = {ai,j : 1 ≤ i ≤ n, 1 ≤ j ≤ m}
SX = {sX,j : 1 ≤ j ≤ m}
GX = {gX,k : 1 ≤ k ≤ m(n− 1)}.

Similarly,
Y = B ∪ SY ∪GY

where we set

B = {bi,j : 1 ≤ i ≤ n, 1 ≤ j ≤ m}
SY = {sY,j : 1 ≤ j ≤ m}
GY = {gY,k : 1 ≤ k ≤ m(n− 1)}.

Observe that each dimension contains 2mn elements, so M , if it exists, will have
to contain 2mn 3-tuples.
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Of course, determining whether or not F is satisfiable only requires knowl-
edge of the variables and clauses of F . The contents of X and Y are completely
alien to the 3-Sat problem, but they are essential to the transformation because
we want to be able to create the 3-tuples of 3DM without having to mix rep-
resentations of literals together. In other words, they are there to fill space,
albeit in a very systematic way. Choosing among 3-tuples taken from these
three dimensions, our goal is to create a restricting set R such that a subset of
R that is a matching exists if and only if F is satisfiable. We will construct R
explicitly such that the forward direction holds, and then we’ll prove the reverse
direction.

There will be three different classes of 3-tuples in R, each serving a distinct
function. The first class is the Ti’s (1 ≤ i ≤ n). The Ti’s are further divided
into the T f

i ’s and the T t
i ’s. R will contain both of these subclasses but for a

fixed i, the matching M , if it exists, will contain only the T f
i ’s if the satisfying

truth assignment to F makes ui false. It will contain only the T t
i ’s if the truth

assignment makes ui true.
Further, this class is the only place where we will make use of the ai,j ’s from

A and the bi,j ’s from B. The purpose of these “dummy elements” is to keep
the 3-tuples of the Ti’s distinct from each other, as well as to pad them out to
3 elements. The precise structures are:

T t
i = {(ūi,j , ai,j , bi,j) : 1 ≤ j ≤ m}

T f
i = {(ui,j , ai,j+1, bi,j) : 1 ≤ j < m} ∪ {(ui,m, ai,1, bi,m)}

The only important 3-Sat information that is encoded in the Ti’s is in the ui,j ’s
and the ūi,j ’s, but we must obey 3DM form and create 3-tuples, so we invent
the ai,j ’s and bi,j ’s. Note that both of these sets contain exactly m 3-tuples,
and also that if a certain ap,q and bk,l appear together in one of the Ti’s, they
will not appear together in any other Ti. This preserves the eligibility of the
Ti’s as part of a matching.

A word on the encoding that we have performed with the Ti’s: it may seem
exactly backwards to put the ui,j ’s into the “ui is false” subclass T f

i and the
ūi,j ’s into the “ui is true” subclass T t

i . The reason for this choice will become
clear after we construct the next class of 3-tuples.

Now that we have encoded the possible truth values of F ’s literals, we need
to encode the arrangement of the literals among its m clauses. We’ll call this
class of 3-tuples the Cj ’s, with 1 ≤ j ≤ m. For this class, we use the sX,j ’s and
the sY,j ’s to fill space, similar to the way we used the ai,j ’s and bi,j ’s before.
Each member of this class is of the form

Cj = {(ui,j , sX,j , sY,j) : ui ∈ cj} ∪ {(ūi,j , sX,j , sY,j) : ūi ∈ cj}.

We assume without loss of generality that none of the cj ’s contain repeated
literals (3-Sat allows this to happen when we need to expand a clause of one
or two literals to fit the form), so for each j, Cj contains three 3-tuples. To
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include all of the sX,j ’s and sY,j ’s, as required, M will have to include exactly
one 3-tuple from Cj for each j. If a clause cj of F is satisfied by some ui, then
T t

i ⊆ M , which puts ūi,j into M , and then we can put (ui,j , sX,j , sY,j) ∈ Cj into
M as well, so both ūi,j and ui,j are accounted for exactly once in M , which is
what we want. The situation runs similarly when cj is satisfied by some ūi.

The final class of 3-tuples makes use of the gX,k’s and gY,k’s. Its purpose is
to include those ui,j ’s and ūi,j ’s that have so far been excluded from M because
of redundancy. Specifically, it is possible that a clause of F contains more than
one true literal, but only one satisfying literal per clause can be accounted for
in Cj ∩M , or else M would be invalid because it would contain duplicate sX,j ’s
and sY,j ’s. So G stands for “garbage collection,” and takes the form

G = {(ui,j , gX,k, gY,k), (ūi,j , gX,k, gY,k) : 1 ≤ k ≤ m(n−1), 1 ≤ i ≤ n, 1 ≤ j ≤ m}.

Although G contains an exhaustive catalog of the ūi,j ’s and ui,j ’s, only m(n−1)
of its 3-tuples will be used by M - that is, enough so that all of the gX,k’s and
gY,k’s will be used and the total number of 3-tuples in M comes to 2mn.

We have now constructed our dimensions and specified how we will choose
our restricting set:

R =

(
n⋃

i=1

Ti

)
∪

 m⋃
j=1

Cj

 ∪G

We have seen how the existence of a valid matching using the elements of R
implies that a satisfying assignment exists for F . Now we prove the converse. Let
θ be an assignment that satisfies F . We will show that a valid matching exists
by constructing one. For each clause cj in F , let zj be one of the three literals
in cj that is made true by θ, and then let uzj

be the ui,j or ūi,j corresponding
to that literal. Our matching is then

M =

( ⋃
uitrue

T t
i

)
∪

( ⋃
uifalse

T f
i

)
∪

 m⋃
j=1

{(uzj
, sX,j , sY,j)}

 ∪G′

where G′ is the subset of G containing m(n − 1) 3-tuples that we discussed
above. We can be assured that the count of 3-tuples can always work out as we
expect, because M contains exactly mn 3-tuples from the Ti’s, and m 3-tuples
from the Cj ’s, so in total M has mn + m + m(n− 1) = 2mn elements. Finally,
note that the second condition for M to be a matching is satisfied because each
of the elements from W , X and Y are used exactly once.

The entire transformation requires the creation of 3(2mn) elements among
three dimensions. The restricting set R contains the 2mn elements that will
form M (if possible), and in addition, the mn elements left over from the Ti’s,
the 2m elements left over from the Cj ’s, and the [2m(n− 1)mn]− [m(n− 1)] =
m(n− 1)(2mn− 1) elements left over from G. Writing out all of these elements
can be done in polynomial time. Once R has been specified, we can submit it
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to a 3DM-oracle that will find a matching if and only if F is satisfiable, and
this submission need only occur once. Thus the transformation takes place
in polynomial time, completing the reduction. We conclude that 3DM is NP-
complete.12

5 Conclusion

In this paper we’ve seen the basis of all modern thinking about algorithmic
problems. Though no programmers today feel the need to translate their code
into the language of a Turing machine (thanks in part to faith in Church’s
Thesis) it is still the baseline model that allows us to make claims about the time
complexity of algorithms. In addition, more and more NP-complete problems
are arising as the result of scientific research in many different fields, lending
ever more urgency to the drive to confirm or disprove the suspicion that P 6= NP.

NP-completeness and polynomial-time reductions are central concepts in
complexity theory. Nonetheless, just as this paper has only scratched the surface
of the thousands of known NP-complete problems, these two concepts are only
the barest beginnings of the results we can obtain from complexity theory. For
example, we mentioned that to find a problem NP-complete is to throw cold
water on our hopes of finding an efficient algorithm to solve it, but instead of
giving up entirely we can create algorithms that efficiently generate solutions,
with some known chance of failure or error. For algorithms like these, a whole
new species of complexity classes emerges. Further, our results need not only
be applicable to decision problems. It can be shown in many cases that the
optimization and evaluation forms of a problem (for example, questions like
“what is the largest clique in this graph?” and “what is the size of the largest
clique in this graph?”) are polynomial-time reducible to the decision form that
we have examined here. A final example is the exploration of space complexity,
which complements the time complexity results that we’ve seen and is of just as
much importance to computer science, again despite the rapidly growing storage
and memory capacity of modern digital computers. Complexity theory, in short,
remains a rich field with many open problems and wide-ranging implications for
math and science.

12Garey & Johnson pp. 50-3
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