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0 Notation

We will be using the following notation throughout the discussion. This list is included here as a

reference. Also, some of the concepts and symbols will be defined in subsequent sections. However,

due to the number of different symbols we will use, we have compiled the more archaic ones here.

lR, lN : the real and natural numbers

l̄R : the extended natural numbers, i.e. the interval [−∞,∞]

l̄R+ : the nonnegative (extended) real numbers, i.e. the interval [0,∞]

Ω : a sample space, a set of possible outcomes, or any arbitrary set

F : an arbitrary σ-algebra on subsets of a set Ω

σ 〈A〉 : the σ-algebra generated by a subset A ⊆ Ω.

T : a function between the set Ω and Ω itself

φ, ψ : simple functions on the set Ω

µ : a measure on a space Ω with an associated σ-algebra F
(Xn) : a sequence of objects Xi, i. e. X1, X2, . . .

fn → f : a sequence of functions (fn) converging pointwise to f

An ↑ A : here A is a set and (An) is a sequence of sets and
⋃∞

i=1 Ai = A and A1 ⊆ A2 ⊆ . . .

An ↓ A : as above, replacing ⊆ with ⊇ and
⋃∞

i=1 with
⋂∞

i=1

fn ↑ f : a sequence of functions (fn : D → lR) and a function f : D → lR

such that f1(x) ≤ f2(x) ≤ . . . for all x ∈ D and fn → f

fn ↓ f : as above, replacing ≤ with ≥
AC : the complement of A with respect to Ω, i.e. the set of all x ∈ Ω such that x /∈ A

A \B : the set of all points in A but not in B
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1 Introduction

1.1 Sizes, Sets, and Things

The primary objective of this paper is to study the structure of spaces that have “sizes” associated

with them. For example, we will be thinking about lengths, areas, and volumes. We want to formulate

a mathematical formalism that will allow us to define the “size” of a set in a very abstract way. Now,

we know intuitively that a size will be some real number, and that there are many ways in which we

can assign a size to an object. Thus, it is clear that the two primary fields of mathematics that we

will apply to build our formalism are the study of the real numbers, or real analysis, and the study

of sets, or set theory. Indeed, in order to talk about sizes abstractly, we have to be able to look

at objects and regions as abstract entities. Set theory provides us with this language and we will

assume that the basic tenets of set theory are familiar to the reader. However, we will define a few

key concepts that we will be using throughout the discussion.

Definition 1.1.1. Let {Ai | i ∈ Λ} be an arbitrary collection of sets. We say that these sets are

mutually or pairwise disjoint if for any m,n ∈ Λ such that n 6= m, An ∩ Am = ∅.

Definition 1.1.2. We say that a sequence of sets (Ai | i ∈ lN ) is decreasing if A1 ⊇ A2 ⊇ . . .. Now,

if we have a set B such that B =
⋂∞

n=1 An for a decreasing sequence (Ai), then we write An ↓ B.

Similarly, a sequence of sets (An) is increasing if A1 ⊆ A2 ⊆ . . .. Moreover, if B =
⋃∞

n=1 An for such

a sequence, then we write An ↑ B.

Now, we also know that sizes are real numbers. If we think about the area of a region on a

plane, say, we think about some value of the area in square centimeters, for instance. Also, if we are

talking about the number of elements in a finite set, this number is some integer, which is included

in the real numbers. Finally, if we want to talk about the probability of a certain event, we think

of a real number between zero and one. The point is, all of these examples are examples of sizes or

measures of sets. So, we see that a measure will have to yield a real number. Therefore, it will be

important for us to have a solid background in real analysis while constructing our formalism. Again,

we will assume that the reader is familiar with the basic ideas in this field. However, some of the

notations and definitions we have given for sets above, have corresponding concepts for sequences of

real numbers and real-valued functions. Specifically, we can say that for a sequence of real numbers

(an), the notation an ↑ a for some a ∈ lR means that an converges to a and a1 ≤ a2 ≤ a3 ≤ . . .. We
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have an analogous definition for an ↓ a. Thus, a similar idea can be applied to real valued functions.

Consider a sequence of functions (fn), where each function maps elements in some set Ω to the real

numbers lR. Then, fn ↑ f means that f1(x) ≤ f2(x) . . . for all x ∈ Ω, and fn converges to f pointwise.

Note that we are assuming here that the reader is familiar with the notions of pointwise and uniform

convergence of functions from elementary real analysis. We will define some more concepts concerning

these issues in the next subsection.

Finally, in the proofs that follow it will be handy to recall the DeMorgan’s laws for sets. We will

use the language employed in the introductory real analysis book by Schumacher [Sch].

Theorem 1.1.3. (DeMorgan’s laws ) Let Ω be a set. Let {Bα}α∈Λ be a collection of subsets of Ω.

Then, we have that

1.

(⋃
α∈Λ

Bα

)C

=
⋂
α∈Λ

BC
α

2.

(⋂
α∈Λ

Bα

)C

=
⋃
α∈Λ

BC
α

1.2 The Extended Real Numbers

In order to facilitate the subsequent discussions, we want to be able to talk about not only the real

line, but also the points +∞ and −∞. These two points are not points in the real numbers, but

rather they represent points that satisfy the following relation:

−∞ < x < ∞ for all x ∈ lR.

We can see that the relation above makes intuitive sense because indeed, we cannot have a real

number that is less than negative infinity and greater than positive infinity. We will also define

operations between the infinities and the real numbers in the following way, following [Ad] pg 53:

Definition 1.2.1. Let x ∈ lR. We define operations on lR ∪ {−∞,∞} in the following way:

i. x + (±∞) = ±∞+ x = ±∞

ii. x(±∞) = ±∞ if x > 0
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iii. x(±∞) = ∓∞ if x < 0

The other possibilities, such as division by the infinities, we will not define. We will also not

consider adding a positive infinity to a negative infinity. However, the above definitions should be

intuitively reasonable. We are simply saying that multiplication or addition of a finite real number

x by an infinite number yields an infinite number. The set lR ∪ {−∞, +∞} is referred to as the

extended real numbers. In using the extended real numbers, we keep in mind that the two infinities

are not real numbers. They are simply useful conventions that allow us to talk about infinite sizes,

such as the size of the interval [1,∞). From now on, whenever we mention real numbers, we will

be referring to the extended real numbers. Also, we will denote our extended real numbers by the

symbol l̄R.

In this paper we will also be concerned with not only sequences of sets, but also sequences of

(extended) real numbers and real valued functions. Therefore, we have similar definitions for the

limits of such sequences. We recall from basic analysis, the following terminology([Sch] pg. 330):

Definition 1.2.2. Let (an) be a bounded sequence of real numbers. We define two sequences based

on the sequence (an). The upper sequence is defined as ān = supk≥n ak. Similarly, the lower sequence

is an = infk≥n ak. From the definitions of the supremum and infimum, it is easy to show that the upper

sequence and the lower sequence are monotonic. Therefore, the limits of these two sequences must

exist, and we call these limits the supremum and the infimum limits, respectively, of the sequence

(an). These are denoted by lim sup an and lim inf an.

Now, suppose that we have a sequence of real numbers (an) that is not bounded. A fundamental

result in analysis is that the limits lim sup an and lim inf an exist, provided that we allow them to be

±∞. Also, we will often use the notation lim supn→∞ an when we do not want to be ambiguous about

the index of the sequence for which we are evaluating the supremum and infimum limits. All of these

definitions can be generalized to sequences of real-valued functions on some set Ω. We simply look

at the real number sequences that are created when we evaluate the functions at particular points

on their domains. In other words, for a particular sequence of functions (fn) (where fn : Ω → lR for

each n ∈ lN ), for each x ∈ Ω, the sequence (fn(x)) is a sequence of real numbers. Therefore, we can

define the functions lim sup fn and lim inf fn at each point x ∈ Ω by using the definitions we have

above for sequences of real numbers. We may also conclude that such limiting functions (lim sup fn

and lim inf fn) exist for all real-valued functions. We also recall from analysis that a sequence of real-

valued functions (fn) converges pointwise to some function f if and only if lim sup fn = lim inf fn.
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2 Measure Theory

2.1 Preliminaries

As we mentioned previously, measure theory is the study of the sizes of sets. Specifically, we usually

look at some large set Ω, and then we compute the sizes of subsets of Ω. For example, a particular

Ω might be all of space lR3. Then, we can think about volumes of particular regions (subsets) in lR3.

However, the subsets of Ω that we can actually measure must have certain natural properties. These

natural properties motivate the definition of σ-algebra, which is basically a collection of subsets of Ω

that behave in a nice way. Thus, using the language found on page 9 in Athreya’s book [Ath],

Definition 2.1.1. A collection of sets F ⊂ P(Ω) is called a σ-algebra if

i. Ω ∈ F

ii. A ∈ F implies AC ∈ F

iii. A,B ∈ F implies A ∪B ∈ F

iv. An ∈ F for n ≥ 1 implies
⋃

n≥1 An ∈ F

In other words, a σ-algebra is a class of subsets of Ω that contains Ω and is closed under complemen-

tation and countable unions.

Given this definition, we will now use the symbol F to refer to the σ-algebra associated with the

set Ω. Let us now consider the different conditions for a σ-algebra. The first condition basically says

that the whole set we are looking at has to be in the σ-algebra. This makes sense because we define

Ω in such a way that the structure of the set itself allows it to be measured. We know, for example,

that there are a variety of metrics associated with the three-dimensional real space R3. The second

condition means that for every nicely behaved set A ∈ F , we can think about the set of elements

not in the set. This set should also be nicely behaved because we want to be able to consider such

things like the probability of an event not occurring, or the volume outside of some region in real

space. The last two events simply say that we can add together nicely behaved sets to get another

nicely behaved set. For example, if we have two regions in space whose volume can be measured,

then certainly we expect that the entire region the two regions cover can be measured, as well. Now
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that we have tried to clear up these issues a little bit, we will prove an easy corollary of the definition

of σ-algebra given above.

Corollary 2.1.2. Suppose (An) is a sequence of subsets of Ω such that An ∈ F for all n ∈ lN . Then,

the countable intersection
⋂∞

n=1 An is also in F .

Proof. Since F is closed under complementation, AC
n ∈ F for all n ∈ lN . Moreover, because F is

closed under countable unions,
⋃∞

n=1 AC
n ∈ F . Finally, by DeMorgan’s Laws,

∞⋃
n=1

AC
n =

( ∞⋂
n=1

An

)C

∈ F ⇒
∞⋂

n=1

An ∈ F .

Perhaps the most trivial example of a σ-algebra corresponding to a set Ω is just the collection

{∅, Ω}. Notice that this collection satisfies all the properties given above. Indeed, ∅ ∩ Ω = ∅ and

∅ ∪ Ω = Ω. Thus, this is a very easy example. Also, notice that this example is necessarily the

smallest σ-algebra possible for a set. Another easy example of a σ-algebra is just the powerset P(Ω)

of Ω. Recall that a powerset is simply the collection of all subsets of Ω. Thus, it must satisfy our

conditions because any countable unions, complements, and things like that are clearly subsets of

Ω, and thus must be included in the powerset. Also, since the powerset includes all possible subsets

of Ω, it is necessarily the largest possible σ-algebra. It is also possible, given some collection A of

subsets of Ω, to construct the smallest σ-algebra containing A. We will now describe how to do this

by employing the language found on page 11 in Athreya’s book [Ath].

Definition 2.1.3. If A is a class of subsets of Ω, then the σ-algebra generated by A, which we will

denote by σ 〈A〉, is

σ 〈A〉 ≡
⋂

F∈I(A)

F ,

where I(A) ≡ {F | A ⊂ F and F is a σ-algebra on Ω} is the collection of all the σ-algebras con-

taining our collection A. Notice that this definition is well defined because we know that the powerset

P(Ω) contains our collection A and is a σ-algebra. Thus, our set I(A) is not empty and we can

take the intersection. Finally, notice that σ 〈A〉 is a σ-algebra because given any sequence of sets

A1, A2, . . . , An ∈ σ 〈A〉, then their intersections, complements, and unions must also be in σ 〈A〉 be-

cause from the properties of σ-algebras, we know that these intersections, complements, and unions

will be in every single σ-algebra containing A.
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The most important example of a generated σ-algebra is the one that is generated by the open

sets in lRn. So, we have the following definition.

Definition 2.1.4. The Borel σ-algebra on lRn is defined as the σ-algebra generated by the collection

of open sets in lRn.

We now want to be able to characterize the size of particular subsets of our set Ω. Indeed, we

want to be able to assign numbers to elements in F . Therefore, we want to consider functions that

map elements in F to the real numbers. In order for these functions to reasonably represent the

“size” of the set, we need to define certain natural properties for these functions. Further, we shall

now call these functions, that assign sizes to sets according to the properties that follow, measures.

So, from Athreya’s book on page 14,

Definition 2.1.5. Consider a (extended) real-valued function µ on a σ-algebra F on a set Ω. We

call µ a measure if

i. µ(F ) ∈ [0,∞] for all A ∈ F

ii. µ(∅) = 0

iii. for any pairwise disjoint collection of sets A1, A2, . . . ∈ F with
⋃

n≥1 An ∈ F ,

µ

(⋃
n≥1

An

)
=

∑
n≥1

µ(An).

We call the triplet (Ω,F , µ) a measure space.

First, notice that the conditions enumerated above work well with the conditions we had for our

σ-algebra. Indeed, the definitions of measure and σ-algebra allow us to add and subtract subsets of

Ω and have the sizes of these subsets behave nicely as we manipulate them. Anyway, let us consider

Def. 2.1.5 by examining each condition. The first condition says that this function must assign a

number from 0 to ∞ to each set in F . This means that we cannot assign a negative number to a

set. Intuitively, this makes sense because a size is intrinsically a positive number. We cannot think

about the area of some region in the plane, the probability of some event, or the mass of gold in a

piece of ore as a negative number. The next condition simply states that if we are measuring a set
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with no elements, i.e. an empty set, then we should get a size of zero. Finally, the third condition

says that if we have multiple, separate, distinct regions we want to measure, such as different pieces

of ore, or different areas in the plane, or different outcomes for a random event, then the combined

size of the regions is simply the sum of the sizes of the individual regions. Thus, we see that these

three conditions provide a mathematical foundation for our intuition about “size”.

2.2 Examples

We will now present concrete illustrations of the general concepts described in the previous sections.

The purpose of the first example is to illustrate the definition of a measure at a very basic level.

So, suppose we have a finite set Ω = {a, b} with just two elements. Here, a and b can be whatever

we like, like an “a”pple and a “b”anana, for example. We may explicitly construct the power set

of Ω. This will be our σ-algebra. We write that F = P(Ω) = {∅, {a}, {b}, Ω}. Now, consider a

function µ : P(Ω) → lR constructed in the following way: µ(∅) = 0, µ({a}) = µ({b}) = 1, and

µ(Ω) = 2. From this construction, we see that the function µ is simply counting the number of

elements in subsets of Ω. This corresponds well with our intuition about the “size” of a finite set

of arbitrary elements. Not surprisingly, then, we find that µ satisfies the properties of a measure

given in Def. 2.1.5. Specifically, notice that the first and second properties follow trivially from the

construction of µ. We can show that the third property is satisfied by writing down all of the pairwise

disjoint collections of subsets (with more than one element) of Ω: ∅ and any other subset; ∅, {a}, {b};
and {a}, {b}. Then, µ(∅ ∪ {a}) = µ({a}) = 1 = µ({a}) + µ(∅), with a similar result for ∅ ∪ {b} and

∅∪Ω. Also, µ(∅∪{a}∪{b}) = µ({a}∪{b}) = µ(Ω) = 2 = µ({a})+µ({b}), and so on. Consequently,

we see that this very simple function satisfies our conditions for a measure in Def. 2.1.5. This is why

such a function is called a counting measure. Further, this function can be generalized to any finite

or countably infinite set Ω.

Perhaps the most famous example of a measure is the “Lebesgue measure” on the real numbers.

In order to get at this measure, however, we have to first look at the “Lebesgue outer measure”.

The latter concept was introduced by Lebesgue in 1902 and is based on covering subsets of the real

numbers with a countably infinite number of intervals (pg. 23 [Bu]). This outer measure is defined

on page 33 in Wheeden’s book [Wh] and on page 131 in Asplund’s textbook on integration [As]. We

will roughly follow the definitions in these two sources.

Definition 2.2.1. Consider the real numbers lR and open intervals I = (a, b), where a ≤ b are two
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real numbers. We say that the length of such an interval is |b−a|. Now, let us suppose we have some

arbitrary subset of the real numbers A ⊆ lR. To define our Lebesgue outer measure, let us cover A

with a countably infinite collection S of open intervals Ik, i.e. S is an open cover of A. Explicitly,

S = {Ii}1≤i≤∞, where Ii = (ai, bi). Then, we can think about the sum

σ(S) =
∞∑
i=1

|bi − ai|.

From the properties of the absolute value, it is clear that 0 ≤ σ(S) ≤ ∞. Finally, we call the Lebesgue

outer measure of A, which we will denote by µ∗L(A), the quantity

µ∗L(A) = inf σ(S),

where the infimum is taken over all open covers S of the set A. We see that 0 ≤ µ∗L(A) ≤ ∞.

Moreover, since the empty set is a subset of any set of real numbers, our infimum σ(S) must include

intervals with zero length. Therefore, the Lebesgue outer measure of the empty set must be zero.

The definition of the outer measure (Def. 2.2.1) can be phrased in terms of any kind of interval:

closed, open, or neither. This is true because the outer measure is an infimum of sums of lengths of

open intervals. Hence, we can just as easily cover a subset A ⊂ lR with closed (or neither open nor

closed) intervals and have the outer measure of A be the same because our closed intervals can be

subsets of open intervals that also cover A and have lengths arbitrarily close to the lengths of the closed

intervals. Moreover, Def. 2.2.1 can easily be generalized to lRn. There, we consider n-dimensional

intervals I = {x : aj < xj < bj, j = 1, 2, . . . , n}, where x = (x1, x2, . . . , xn) ∈ lRn is a vector. Then,

instead of computing the length of this interval, we calculate the volume: v(I) =
∏n

j=1 |bj − aj|.
However, there is a reason we do not call the Lebesgue outer measure just a measure. The problem

with this characterization of subsets of lR is that it does not necessarily satisfy the third property

of a measure given in Def. 2.1.5. The closest we can come to this third condition is the following

property, which is called the countable subadditivity condition ([Wh] pg. 34):

Theorem 2.2.2. If E =
⋃∞

i=1 Ei is a countably infinite union of subsets of lR, then µ∗L(E) ≤∑∞
i=1 µ∗L(Ei).

Proof. We have two cases. First, if µ∗L(Ei) = ∞ for any i ∈ lN , then the theorem follows trivially

from the nonnegativity of the Lebesgue outer measure. Thus, suppose that µ∗L(Ei) < ∞ for all i ∈ lN .
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Let ε > 0 be some arbitrarily tolerance. Given an index k ∈ lN , choose intervals Ik,j = (aj,k, bj,k)

such that Ek ⊂
⋃∞

j=1 Ik,j and µ∗L(Ek) ≤
∑∞

j=1 |bj,k − aj,k| < µ∗L(Ek) + ε 2−k. This is possible because

µ∗L(Ek) is an infimum of “lengths” of open covers (see Def. 2.2.1). Next, since E ⊂ ⋃∞
j=1

⋃∞
k=1 Ik,j,

we also know that µ∗L(E) ≤ µ∗L
(⋃∞

j=1

⋃∞
k=1 Ik,j

)
, because any open cover of the double union of the

intervals Ii,k must cover E, as well. Finally, we combine these results to find that

µ∗L(E) ≤
∞∑

j=1

∞∑

k=1

|bj,k − aj,k| ≤
∞∑

k=1

(
µ∗L(Ek) +

ε

2k

)
=

∞∑

k=1

µ∗L(Ek) + ε,

where we have exchanged the order of the two summations and summed the geometric series. The

theorem follows because our ε was arbitrary.

Unfortunately, the converse of Thm. 2.2.2 is not true in general. However, we can define a class

of subsets of the real numbers whose Lebesgue outer measure satisfies all of the requirements of the

measure given in Def. 2.1.5. These subsets are called measurable. We will now present a definition

of this class of subsets, using the language in Wheeden’s book on page 37 [Wh].

Definition 2.2.3. A subset A of lR (or lRn) is said to be Lebesgue measurable, or simply measurable,

if given any ε > 0, there exists an open subset B of the real numbers such that

A ⊂ B and µ∗L(B \ A) < ε.

If A is measurable, its Lebesgue outer measure is called its Lebesgue measure, and is denoted by

µL(A).

Using this definition, it is now possible to show a variety of nice properties of measurable sets.

However, the proofs of these properties are not particularly instructive; they simply rehash ideas

from real analysis. Thus, we refer the reader to the presentation found on pages 37 through 42 in

Wheeden’s book [Wh]. We will just list the results.

Consider subsets of the real numbers. We can derive the following properties using Def. 2.2.3 and

basic considerations from real analysis:

• Every open or closed subset is measurable.

• Every subset of outer measure zero is measurable.
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• Every interval is measurable.

• Any countable intersection or union of measurable subsets is measurable.

• The Lebesgue measure satisfies the properties of a measure.

• The collection of measurable subsets of lR (or lRn) is a σ-algebra!

• Every set in the Borel σ-algebra is measurable (see Def. 2.1.4).

The last few results are especially important because they allow us to extend the general formalism

we will develop for measures on σ-algebras in later sections to the Lebesgue measure on σ-algebras

of measurable subsets of the real numbers.

Before we move on to other considerations, it is instructive to think about sets of measure zero.

Consider that a set with a single real number, such as {a}, where a ∈ lR, has a Lebesgue outer

measure of zero (µ∗L({a}) = |a − a| = 0). This means, from the results given above, that every set

with a single real number has a Lebesgue measure of zero. Now, suppose we have a pairwise disjoint

collection of these single element sets. That is, we have a countably infinite number of single element

sets Ai, where all of the elements are distinct real numbers: Ai = {ai : ai ∈ lR} for all i ∈ lN such

that ai 6= aj whenever i 6= j. From the third property of the measure in Def. 2.1.5, we conclude that

µL(
⋃

i Ai) =
∑

i µL(Ai) = 0. Hence, every countable subset of the real numbers has measure zero!

This makes intuitive sense because we know that no matter how many distinct points we remove

from the real line, we will still have uncountably many remaining numbers. Thus, we expect that

the “length”, or “size”, of a countable number of points on the real line is zero. Interestingly, not

all subsets of the real numbers with measure zero are countable! Perhaps the most famous example

of such a subset was developed by Georg Cantor at the turn of the last century (pg. 252 [Bu]).

A schematic of the construction of this subset is shown in Fig. 1. We will not prove that this set

has measure zero, but refer the reader to Appendix A in Burk’s book [Bu] for an exploration of the

fascinating properties of this set.

The purpose of the previous discussions is to illustrate that the notion of measurability is not

trivial. Indeed, we may not be able to measure certain sets at all! For example, in 1905, Vitali

discovered a set of real numbers that is not Lebesgue measurable (pg. 266 [Bu]). This is why we

went through the trouble discussing the distinction between the Lebesgue outer measure and measure

on the real numbers. Also, in the discussions that follow, we will often prove results that are true

11



Figure 1: This figure illustrates a subset of the [0, 1] interval of the real numbers that is not countable,

but has Lebesgue measure zero! It is called the Cantor middle third set. Part of this figure was provided

by [Wi].

for an entire set Ω, with the possible exception of some subset of Ω with measure zero. We will say

that such results hold “almost everywhere”, or for “almost every” point in the set. So, although we

may speak casually about such a condition in the future, we realize that these subsets of measure

zero may be highly complex and interesting (like the Cantor set). Their exclusion in a proof reflects

the nontrivial fact that some results in measure and integration theory do not apply to pathological

cases.

2.3 Measurable Functions

Sometimes, when we do not have a measure on a set Ω, we want to still be able to characterize certain

functions defined on Ω. In this spirit, we will consider just sets Ω with corresponding σ-algebras F .

We will also keep in mind that whenever we refer to a function, we mean a real-valued function on

the set Ω. Thus, we have the following definitions.

Definition 2.3.1. Let Ω be a nonempty set and let F be a σ-algebra on Ω. Then the pair (Ω,F) is

called a measurable space.

We may now define a special class of real-valued functions on the set Ω (f : Ω → lR).

Definition 2.3.2. The function f : Ω → lR is measurable if for all x ∈ lR, the set

f−1((−∞, x)) ≡ {y ∈ Ω | f(y) < x} is an element of F .

12



Now, what the previous definition is saying is that f behaves well on its domain. That is, if we

look at any x ∈ lR, and consider the subset (−∞, x) of the range of f , then we know that the inverse

image of this subset of the range is an element in F , i.e. a reasonable region to which we can assign

a size. These measurable functions have some nice properties. We will prove them in the theorems

that follow.

The first objective is to show that the inequality in Def. 2.3.2 is arbitrary. By allowing us to

define a measurable function in many different ways, we will be able to derive some nice behaviors

of these functions. The proof of the following lemma follows the one outlined by Adams on page 54

of his book [Ad].

Lemma 2.3.3. The following are equivalent for all x ∈ lR:

i. {y ∈ Ω : f(y) ≤ x} ∈ F

ii. {y ∈ Ω : f(y) > x} ∈ F

iii. {y ∈ Ω : f(y) ≥ x} ∈ F

iv. {y ∈ Ω : f(y) < x} ∈ F

Proof.

(i.) ⇔ (ii.): We know that the set {y ∈ Ω : f(y) > x} is the complement of the set {y ∈ Ω : f(y) ≤
x}. Thus, since F is a σ-algebra and closed under complementation (Thm. 2.1.1), we conclude that

if {y ∈ Ω : f(y) > x} ∈ F , then {y ∈ Ω : f(y) ≤ x} ∈ F , as well. The converse is true by the same

argument.

(iii.) ⇔ (iv.): Once again, the two sets in question are complementary. The implications follow by

the same argument given above.

(ii.) ⇒ (iii.): We will first show that

{y ∈ Ω : f(y) ≥ x} =
∞⋂
i=1

{
y ∈ Ω : f(y) > x− 1

n

}
.

(⊆): Let p ∈ {y ∈ Ω : f(y) ≥ x}. In other words, f(p) ≥ x. Then, we know that this means that

for all n ∈ lN , f(p) ≥ x > x− 1
n
. Therefore, p ∈ ⋂∞

i=1

{
y ∈ Ω : f(y) > x− 1

n

}
.

13



(⊇): Let p ∈ ⋂∞
n=1

{
y ∈ Ω : f(y) > x− 1

n

}
. Now, consider an arbitrary ε > 0. Since f(p) > x− 1/n

for all n ∈ lN , choose M ∈ lN such that 1/M < ε. We conclude that f(p)+ε > f(p)+1/M > x. From

the basic properties of the real numbers, this means that f(p) ≥ x and so p ∈ {y ∈ Ω : f(y) ≥ x}.
Considering the equality we proved above, we realize that the sets

{
y ∈ Ω : f(y) > x− 1

n

}
must be

in F for all n ∈ lN by our hypothesis (ii). Therefore, since F is closed under countable intersections

(Corr. 2.1.2),
⋂∞

n=1

{
y ∈ Ω : f(y) > x− 1

n

}
= {y ∈ Ω : f(y) ≥ x} ∈ F , as well.

(iv.) ⇒ (i.): This implication must follow by a parallel proof to the one given above for (ii.) ⇒
(iii.).

Now that we have established the many ways in which a function can be measurable, we can derive

a few nice properties of measurable functions. The first property, which will be stated without proof,

is that any finite sum of measurable functions is a measurable function. Also, any finite product of

measurable functions is a measurable function. These two properties follow from the definitions given

above and are proven on page 42 in [Ath]. We will omit the proofs in favor of showing explicitly the

following properties of sequences of measurable functions (outlined on page 135 in Burk [Bu]).

Theorem 2.3.4. Suppose (fk) is a sequence of measurable functions on Ω. Then, the following

functions are also measurable:

i. f̄k = sup{fk, fk+1, fk+2, . . .} and fk = inf{fk, fk+1, fk+2, . . .} for k = 1, 2, . . .

ii. lim sup fk = lim f̄k and lim inf fk = lim fk

iii. If lim fk converges pointwise to a function f everywhere in Ω, then f is also measurable

Proof.

(i.): First we will show that {y ∈ Ω | f̄k(y) > x} =
⋃∞

n=k{y ∈ Ω | fk(y) > x}.
(⊆): We will proceed by contrapositive. Pick some arbitrary p ∈ Ω. Now, suppose that p /∈⋃∞

n=k{y ∈ Ω | fk(y) > x} . Consequently, fn(p) ≤ x for all n ≥ k. However, this means that x is an

upper bound for the set {fk(p), fk+1(p), . . .}. By the definition of a supremum, f̄k(p) ≤ x. We find

that p /∈ {y ∈ Ω | f̄k(y) > x}. We are now done.

(⊇): Suppose that p ∈ ⋃∞
n=k{y ∈ Ω | fk(y) > x}. Thus, there exists some l ≥ k such that fl(p) > x.

However, by the definition of a supremum, we now see that f̄k(p) ≥ fl(p) > x, as well. We conclude

that p ∈ {y ∈ Ω | f̄k(y) > x}.
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The equality has now been shown and we reason that {y ∈ Ω | f̄k(y) > x} =
⋃∞

n=k{y ∈ Ω | fk(y) >

x} ∈ F since F is closed under countable unions and each function fk is measurable. Thus, by

Thm. 2.3.3, f̄k must be a measurable function. For fk(y), we realize that {y ∈ Ω | fk(y) < x} =⋃∞
n=k{y ∈ Ω | fk(y) < x} ∈ F by a parallel proof to the one give above for f̄k(y). By Thm. 2.3.3,

we now know that fk(y) is measurable.

(ii.): Consider that part (i.) tells us that (f̄k) and (fk) are, respectively, nonincreasing and non-

decreasing sequences of measurable functions. Consequently, by the respective nonincreasing and

nondecreasing properties of these sequences, we write that lim sup fk = limk→∞ f̄k = inf{f̄1, f̄2, . . .}
and lim inf fk = limk→∞ fk = sup{f1, f2, . . .}. We again use part (i.) to conclude that lim sup fk and

lim inf fk must be measurable.

(iii.): Suppose that lim fk converges pointwise to a function f everywhere in Ω. From our consid-

erations about real-valued functions, we have that lim sup fk = lim inf fk = f . From the parts above,

f must be measurable.

Let us consider this result for a moment. It is very important. We already know from elementary

real analysis that pointwise convergence of functions is, in a sense, the “weakest” kind of convergence.

For example, we know that if a sequence of functions (fn) converges uniformly to a function f , then

the sequence must converge pointwise to f , as well. Thus, this result is powerful because we can

deduce the measurability of a function by simply constructing a sequence of functions that eventually

approach the function of interest at any given point on its domain. Finally, we keep in mind that

the objective here is to build up a formal mathematical structure that will allow us to characterize

subsets of sets Ω. Indeed, we want to find a class of nicely behaved, real-valued functions on these

subsets. As we shall see, the purpose here is to find functions that are amenable to integration.

3 Integration

3.1 General Principles

We now want to build up the mathematical formalism that will allow us to integrate measurable

functions on Ω. Recall that Ω can be a variety of sets, including the real numbers, or a space of

possible outcomes, or even the set of all the words in this paper! Regardless, we see that the notion
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of this set Ω is abstract. Thus, it is difficult to consider integrals over subsets of such sets Ω if we do

not have an appropriate way of characterizing the size of these subsets. Indeed, whenever we think

about integrating, we think of computing the area “under” some function. However, when we say

“under” a function, we are making a statement about the sizes of subsets of the function’s domain.

Indeed, every integral of a function has an associated integral measure.

Figure 2: This figure illustrates, conceptually, the necessity of having a measure µ on subsets A of

the domain of a function f we want to integrate. Indeed, the approximation of the volume of shade

(
∫

X
f) is the area of the shade spot on the ground (µ(X)), times the “height” of the umbrella (h).

Figuratively, we can think about these ideas by imagining we are outside with an umbrella on

a sunny day. We might ask: How much shade is my umbrella providing? If we think about this

in terms of the total volume of shade (i.e. the “integral under the umbrella”), we must not only

consider the area of the umbrella (the range of our function), but also the size of the dark spot our

umbrella makes on the ground. This is illustrated in Fig. 2. Another way of looking at it is realizing

that in order to compute the integral
∫

X
f , we need a way to characterize the size of the set X in

the left-most graph of Fig. 3. Therefore, in the discussion that follows, when we say “measurable

function” f , we will always assume that we are talking about measurable functions f : Ω → l̄R, where

Ω is now part of the measure space (Ω,F , µ). Indeed, we are essentially combining our discussions

of measures and measurable functions.
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Let us first consider the Riemann integral of functions that map real numbers to real numbers.

Riemann integration should be familiar to the reader from elementary real analysis. For the reader’s

convenience, we will define the Riemann integral using a definition from an introductory analysis

textbook. Schumacher writes on pages 214 and 215 the following definitions [Sc].

Definition 3.1.1. Let a and b be real numbers with a < b. Then any set of the form P =

{x0, x1, . . . , xn−1, xn} that satisfies a = x0 < x1 < . . . < xn = is called a partition of [a, b]. The

intervals [xi−1, xi] are called the subintervals of [a, b] determined by P . The mesh of the partition P

is the length of its longest subinterval. Then, if f is a real-valued function whose domain contains

the interval [a, b], a Riemann sum for f corresponding to a partition P is

R(f, P ) =
n∑

i=1

f(x∗i )(xi − xi−1),

where xi − 1 ≤ x∗i ≤ xi for each i ≤ n.

Now, notice the kind of mathematical formalism that is being developed here for the Riemann

integral. We begin by partitioning the domain of the function f : lR → lR into intervals. Think

about an analogous procedure for a measurable function. How can we break up the set Ω? This

set is completely general; it certainly does not have to be the set of real numbers. So, how do you

break up, for example, the set of words in this paper into intervals? It is obvious that such a feat is

intractably difficult, if not impossible. We can already see that the Riemann integral might not be

the best approach. However, let us see what the actual definition is for this kind of integral. Again,

from Schumacher:

Definition 3.1.2. Let a, b ∈ lR with a < b. Let f be a real-valued function whose domain contains

the interval [a, b]. We say that f is Riemann Integrable on [a, b] if there exists a real number I such

that for all ε > 0 there exists δ > 0 such that |R(f, P )− I| < ε whenever R(f, P ) is a Riemann sum

for f coresponding to a partition of [a, b] of mesh less than δ. We denote I by
∫ b

a
f and call it The

Riemann Integral of f over [a, b].

Consider that what we are doing here is that we are considering a real-valued function f on an

interval [a, b]. Then, we are breaking up [a, b] into small subintervals. By making small rectangles

out of these subintervals, we are able to compute the approximate area under the function by adding

together the areas of the rectangles. We say that the integral of the function is the value of this
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Figure 3: Here we have an illustration of the terms in the definition of the Riemann integral. We

also illustrate the difficulty of assigning similar definitions to arbitrary measurable functions.

approximation as the partitioning becomes arbitrarily fine. The relevant terms in Def. 3.1.1 and

Def. 3.1.2 are shown in Fig. 3. So, what can we learn from Riemann integrals that we can apply to

our measurable functions? First of all, we certainly cannot partition our domain Ω into finer and

finer pieces. As shown in Fig. 3, we may not even have greater than and less than relations on the

set Ω. Thus, a partitioning of the set Ω into intervals is not plausible. However, the idea of adding

up simple areas, such as rectangles, seems promising. Indeed, if we can somehow approximate our

measurable function by a set of simple objects, then we might be able to compute an integral based

on a finer and finer approximation of the measurable function, just as we did in the Riemann integral

case. This is the main idea of the Lebesgue integral. Indeed, as we shall see, instead of breaking

up our domain into finer and finer pieces to create vertical rectangles, it will be more advantageous

to break up the range of our measurable functions and add up horizontal strips. However, we can’t

exactly add up horizontal strips, so what we really mean is that we add up the integrals of functions

that approximate our function on these horizontal strips. This is a little difficult to think about right

now without any explicit mathematics, however, we will attempt to illustrate this idea with a picture
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(Fig. 4). The figure we have is a little teaser for the discussion that will follow, as we introduce some

notions that seem a little foreign right now, such as the concept of “step functions”. However, it will

all be clearer by the end of the next section.

Figure 4: This illustrates a way we can approximate the integral of an arbitrary measurable function.

The idea is based on partitioning the range of the function and approximating each horizontal strip

with step functions.
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3.2 Simple Functions

Motivated by the previous discussion, we make the following definitions (following Athreya on page

49)

Definition 3.2.1. Let A ∈ F . We define a function IA : Ω → lR by

IA(a) =





1 if a ∈ A

0 if a /∈ A

We call this function IA the characteristic function of A.

Definition 3.2.2. A function φ : Ω → l̄R is called simple if there exists a finite set of elements

{a1, a2, . . . , an} ⊂ l̄R and mutually disjoint measurable sets A1, A2, . . . , An ∈ F such that

φ =
n∑

i=1

ai IAi
.

Let us now show that the simple functions defined above are measurable using Def. 2.3.2. This

will give us a better idea of how these definitions are implemented.

Theorem 3.2.3. Simple functions are measurable.

Proof. Suppose we have a simple function φ : Ω → l̄R on (Ω,F , µ). Then, there exists a set of real

numbers {a1, a2, . . . , an} and mutually disjoint measurable sets A1, A2, . . . , An ∈ F such that

φ =
n∑

i=1

ai IAi
.

Consider some point y ∈ Ω. If y /∈ Ai for all 1 ≤ i ≤ n, then φ(y) = 0 by Def. 3.2.1. Next, suppose

y ∈ Aj for some 1 ≤ j ≤ n. Then, since our sets Ai (1 ≤ i ≤ n) are mutually disjoint, IAj
(y) = 1

and IAi
(y) = 0 for all i 6= j. Therefore, φ(y) = aj (notice that this must be true for all y ∈ Aj).

Since our y ∈ Ω was arbitrary, we find that φ can only take on the values 0, a1, a2, . . . , an ∈ l̄R. Now,

choose an arbitrary point x ∈ l̄R and consider the interval (−∞, x). From our considerations of φ

above, and from the fact that ai ∈ (−∞, x) whenever ai < x, the inverse image of φ on this interval

must be the union of all the Ai’s for which ai < x. Also, if x > 0, then 0 ∈ (−∞, x) and we include

the set (∪n
i=1Ai)

C in the union of the Ai’s to construct the inverse image of φ on (−∞, x). However,

F contains all of the sets Ai and is closed under complementation and finite unions. Thus, F always

contains our inverse image (−∞, x) for all x ∈ l̄R. So, the theorem follows from Def. 2.3.2.
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As we shall see, these simple functions are what we will use to approximate the integral using the

method outlined in Fig.4. In the figure, however, we referred to these functions as step-functions.

This is not necessarily true, as we now know from the definition. However, step functions certainly are

simple functions because they take on a finite set of values by definition. It’s just that the converse

is not necessarily true. Anyway, these definitions provide us a way of approximating measurable

functions and their integrals. Specifically, we will prove later that any measurable function can be

written as a limit of a sequence of simple functions. However, before we prove this, let us define the

integral of these simple functions. Indeed, this is analogous to defining the Riemann sum for the

Riemann integral definition. Specifically, we will deal with positive valued simple functions, first.

This is intuitively appealing because when we think of areas, we usually think of positive numbers,

first.

Definition 3.2.4. Let φ : Ω → l̄R be a nonnegative simple function. We can represent this function

in the same way we represented it in Def. 3.2.2, except we require that {a1, a2, . . . , an} ⊂ l̄R+. The

integral of φ over Ω with respect to µ, denoted by
∫

Ω
φ dµ, is defined as

∫

Ω

φ dµ ≡
n∑

i=1

ai µ(Ai).

This definition makes intuitive sense because we are summing over the product of the function

values ai and the sizes of the corresponding sets Ai over which the function takes on the value ai.

Notice that the value of this integral must be greater than or equal to zero since the function µ is

always positive and all of the values ai are in l̄R+. We can also consider the integral of φ over some

subset of A ⊂ Ω. However, to make sure this subset is measurable, we require that A ∈ F . Thus, we

simply say that the integral of φ over the set A ∈ F is the integral over Ω of the simple function IAφ.

This function must be simple because we know that for any sets A and B, IAIB = IA∩B. This follows

directly from the definition of a characteristic function. Therefore, the function IAφ is defined in the

same way as in Def. 3.2.2, except we now substitute Ai ∩ A for Ai in the definition. Consequently,

we say that
∫

A
φ dµ ≡ ∑n

i=1 ai µ(Ai ∩ A).

Before we do anything else, it is important to verify that our Def. 3.2.4 makes sense for any

representation of the simple function f . Therefore, we have the following theorem, which I proved

by completing Problem 2.17 on page 76 of Athreya’s Book [At].

Theorem 3.2.5. Let φ be a simple function on Ω. Suppose we have two different representations of
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φ given by

φ =
n∑

i=1

aiIAi
and φ =

m∑
j=1

bjIBj
,

where Ai, Bj ∈ F and ai, bj ∈ l̄R for all i, j. Then,

∫
φ dµ =

n∑
i=1

aiµ(Ai) =
m∑

j=1

bjµ(Bj).

That is, the integral of φ is independent of its representation

Proof. First, consider that we know
⋃n

i=1 Ai =
⋃m

j=1 Bj = Ω from Def. 3.2.2. Therefore, it is clear that

Ai =
⋃m

j=1 Ai ∩ Bj. Furthermore, recall that {Ai | 1 ≤ i ≤ n} and {Bj | 1 ≤ j ≤ m} are collections

of mutually disjoint sets. Consequently, since sets commute under the intersection operation, the set

{Ai ∩Bj | 1 ≤ i ≤ n, 1 ≤ j ≤ n} must also be a collection of mutually disjoint sets. However, notice

something interesting about these sets. First, suppose that Ap∩Bq = ∅ for some p, q. Then, we know

that µ(Ap ∩ Bq) = 0 from the definition of a measure. However, if Ap ∩ Bq 6= ∅, then there exists

some y ∈ Ω that is in both Ap and Bq. We also know that in this case, by the mutual disjointness

of these sets, y /∈ Ai for all i 6= p and y /∈ Bj for all j 6= q. Therefore, if we consider φ(y), we realize

from our definition of a characteristic function that φ(y) = apIAp(y) = ap = bqIAq(y) = bq. In other

words, whenever µ(Ai ∩ Bj) 6= 0, we know that ai = bj. We will keep this in mind as we conclude

our argument. From the properties of the measure µ given in Def. 2.1.5, we find that

n∑
i=1

aiµ(Ai) =
n∑

i=1

aiµ

(
m⋃

j=1

Ai ∩Bj

)
=

n∑
i=1

ai

m∑
j=1

µ(Ai ∩Bj)

=
n∑

i=1

m∑
j=1

aiµ(Ai ∩Bj) =
m∑

j=1

n∑
i=1

bjµ(Bj ∩ Ai) =
m∑

j=1

bj

n∑
i=1

µ(Bj ∩ Ai)

=
m∑

j=1

bjµ

(
n⋃

i=1

Bj ∩ Ai

)
=

m∑
j=1

bjµ(Bj).

We now conclude that our definition for the integral of a positive simple function is well defined.

Now that we have established the definition, it is important to derive a few properties of these

integrals of simple functions. This will allow us to later prove similar properties of integrals of

measurable functions. The proof that follows is my own for parts i. and ii.. The proof for part iii.

is outlined on page 117 in Bogachev’s book [Bo].
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Theorem 3.2.6. Let φ, ψ : Ω → l̄R+ be two nonnegative simple functions. Also, let X ∈ F . Since

our integrals are independent of the simple function representation (by Thm. 3.2.5), we will suppose

that {a1, a2, . . . , an} ⊂ l̄R+ and {A1, A2, . . . , An} ⊂ F are the set of distinct values and collection of

mutually disjoint subsets of Ω, respectively, that represent φ. Similarly, {b1, b2, . . . , bm} ⊂ l̄R+ and

{B1, B2, . . . , Bm} ⊂ F will be the sets for ψ. We can do this by simply finding the finite set of distinct

values ({ai} and {bj}) that the functions φ and ψ evaluate to on their domain, and then constructing

the sets Ai and Bj by finding Ai = φ−1(ai) and Bj = ψ−1(bi). Then,

i.
∫

X
(αφ) dµ = α

∫
X

φ dµ for α ∈ lR such that α ≥ 0

ii.
∫

X
(φ + ψ) dµ =

∫
X

φ dµ +
∫

A
ψ dµ.

iii. If φ(x) ≤ ψ(x) almost everywhere in X, then
∫

X
φ dµ ≤ ∫

X
ψ dµ. We call this property the

monotinicity property.

iv. If φ(x) = ψ(x) almost everywhere in X, then
∫

X
φ dµ ≤ ∫

X
ψ dµ.

Proof.

(i.): This part follows directly from the definition. We see that

∫

X

(αφ) dµ =
n∑
i

αaiµ(Ai ∩X) = α

n∑
i

aiµ(Ai ∩X) = α

∫

X

φ dµ

(ii.): Again, just as in the proof of Thm. 3.2.5, we realize from the definition of simple function that

{Ai ∩ Bj | 1 ≤ i ≤ n, 1 ≤ j ≤ m} is a collection of mutually disjoint sets that cover Ω. This means

that for all y ∈ Ω,
∑n

i=1 IAi
(y) =

∑m
j=1 IBj

(y) = 1. Also, as before, if Ap ∩ Bq 6= ∅ for some p, q,

then we know that for all x ∈ Ap ∩ Bq, φ(x) + ψ(x) = ap + bq. We may now compute our integral.
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Specifically,

∫

X

(φ + ψ) dµ =

∫

X

(
n∑

i=1

aiIAi
+

m∑
j=1

bjIBj

)
dµ =

∫

X

(
n∑

i=1

aiIAi

m∑
j=1

IBj
+

m∑
j=1

bjIBj

n∑
i=1

IAi

)
dµ

=

∫

X

(
n∑

i=1

m∑
j=1

aiIAi∩Bj
+

n∑
i=1

m∑
j=1

bjIBj∩Ai

)
dµ =

n∑
i=1

m∑
j=1

(ai + bj)µ(Ai ∩Bj ∩X)

=
n∑

i=1

ai

m∑
j=1

µ(Ai ∩Bj ∩X) +
m∑

j=1

bj

n∑
i=1

µ(Ai ∩Bj ∩X)

=
n∑

i=1

aiµ(Ai ∩X) +
m∑

j=1

biµ(Bj ∩X) =

∫

X

φ dµ +

∫

X

ψ dµ.

(iii.): Consider the set Λ = {x ∈ X | φ(x) ≤ ψ(x)}. Since the relation specified in the set holds

almost everywhere, we know that µ(X \ Λ) = 0. Also, Λ ∈ F since the functions φ and ψ are

measurable. Suppose that c = supx∈X{|φ(x)| + |ψ(x)|}. Then, since φ > ψ only on the set X \ Λ,

then we know that for all x ∈ X, ψ(x)−φ(x)+ cIX\Λ(x) ≥ 0. Notice that the term cIX\Λ is a simple

function! This is great! We have a sum of simple functions that is non-negative. Therefore, this sum

is itself a simple function. Thus, we know that the integral of this sum will also be greater than or

equal to zero, just by our definition of the integral. We can now use our previous results, part (ii.)

and (i.), to conclude that

∫

X

(ψ − φ + cIX\Λ) dµ =

∫

X

ψ dµ−
∫

X

φ dµ + c

∫

X

IX\Λ dµ =

∫

X

ψ dµ−
∫

X

φ dµ + cµ(X \ Λ) ≥ 0
∫

X

ψ dµ−
∫

X

φ dµ ≥ 0 ⇒
∫

X

φ dµ ≤
∫

X

ψ dµ

(iv.): It is clear that φ = ψ almost everywhere implies that φ ≤ ψ and φ ≥ ψ for every x ∈ X such

that φ(x) = ψ(x). Indeed, by part (iii.), this implies that
∫

X
φ dµ ≤ ∫

X
ψ dµ and

∫
X

φ dµ ≥ ∫
X

ψ dµ.

We may now conclude that
∫

X
φ dµ =

∫
X

ψ dµ

We now have some very important results concerning the integrals of simple functions. Specifically,

we are now able to add and subtract simple functions from each other and be confident that the

integrals add and subtract, also. We may also pull constants out of integrals with confidence. Finally,

parts (iii.) and (iv.) of Thm. 3.2.6 tell us that sets of measure zero have no effect on the integral.

Conceptually, we can think about this in terms of our picture on Fig. 2. If we have a shade spot
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with no area (µ(X) = 0), then our volume of shade is also zero. Indeed, if there is no shade spot

(X = ∅), or if the shade spot is grainy (e.g. a Cantor set or a countable subset of the real numbers),

our umbrella provides us with no shade at all.

We finish this discussion by connecting simple functions to measurable functions. This is necessary

so that we can extend our definition of the integral to arbitrary measurable functions. The following

theorem is a very powerful and crucial result. It will basically tell us that any measurable function is

a limiting function of a sequence of simple functions. The proof given here follows the one presented

on page 62 in Adams’ book [Ad].

Theorem 3.2.7. Let f : Ω → l̄R+ be a nonnegative measurable function. There exists a sequence of

nonnegative simple functions

0 ≤ φ1 ≤ φ2 ≤ φ3 ≤ . . . ≤ f

such that φi → f pointwise. Using our special notation, we say that φi ↑ f . Also, if f is bounded,

then φi → f uniformly.

Proof. We will first define the sequence (φi). Let us pick some arbitrary index n ∈ lN . We will

consider the interval [0, n) in l̄R. Let us break up this interval into smaller subintervals of length

1/2n. Thus, we will have n/(1/2n) = n2n different subintervals Ij. We can explicitly write them as

Ij =

{
y ∈ l̄R | j − 1

2n
≤ y <

j

2n

}
for 1 ≤ j ≤ n2n.

Notice that these subintervals simply divide up the interval [0, n) into n2n equally sized pieces.

However, when we move from n to n + 1, we increase the number of pieces to (n + 1)2n+1. From

our definition, we see that this is done by cutting in half all of the pieces in the nth case and adding

2n+1 of these pieces to the end of the [0, n) interval so that our new half-sized pieces now cover the

interval [0, n + 1). This is illustrated in Fig. 5. We will now consider the sets Aj = f−1(Ij) and

Bn = f−1([n,∞]). Notice that the sets I1, I2, . . . In2n , and [n,∞] cover the entire l̄R+ set. Therefore,

the collection {A1, A2, . . . , An2n , Bn} forms a cover of Ω, since our function f is well-defined. We will

now define our simple function φn as

φn(x) =
n2n∑
j=1

(
j − 1

2n

)
IAj

+ nIBn

This definition allows φn to take on a particular value for the different regions in the partition of

our range of f . Indeed, if we look at Fig. 5, we can see that φn simply approximates the variation
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Figure 5: This illustrates the procedure of partitioning our interval [0, n) into subintervals. We also

show how this partition changes as n → n + 1.

in the range in f over a particular interval (Ij), by a constant value j−1
2n if we are looking at some

point x ∈ Ω in the domain such that f(x) < n. But, if f(x) ≥ n, then we allow φn(x) to just be

n. So, what are we doing here conceptually? We are approximating our function f by partitioning

its range into horizontal “strips”. Indeed, as we mentioned previously, this is just like the technique

used for the Riemann integral, except instead of partitioning the domain, we are partitioning the

range. It should be clear that as n → ∞, our partition of the range becomes arbitrarily fine and in

each case covers the entire range of f (all of l̄R+). Therefore, as n → ∞, we expect our sequence

(φn) to converge to f . We shall see that this is the case in the last steps of the proof.

So, motivated by the previous discussion and figures, consider that on any set Aj, our function f

has to satisfy, for each x ∈ Aj,

j − 1

2n
≤ f(x) <

j

2n
and φn(x) =

j − 1

2n
.

Consequently, φn(x) ≤ f(x) for all x ∈ Aj. This must be true for any 1 ≤ j ≤ n2n. Also, for any
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given Bn, we have that n ≤ f and φn = n on this set. This means that φn(x) ≤ f(x) for all x ∈ Bn.

Once again, since our collection of Ai’s with Bn cover Ω, φn(x) ≤ f(x) for all x ∈ Ω. We now want to

show that φn ≤ φn+1 for all n ∈ lN . Thus, consider one our subintervals Ij = [(j − 1)/2n, j/2n) . We

can cut this interval in half. This is illustrated in Fig. 6. From Fig. 6, we see that Ij = I ′j ∪ I ′′j . We

Figure 6: This illustrates the procedure of cutting our interval Ij in half. Two new intervals I ′j and

I ′′j are formed. The values of our simple functions φn on these intervals are also shown in the figures

on the right.

now consider the sets Aj = f−1(Ij), A′
j = f−1(I ′j), and A′′

j = f−1(I ′′j ). From the way we constructed

our simple functions φn, and from the comparison of Fig. 5 and Fig. 6, it should be clear that

φn(x) = (j − 1)/2n for all x ∈ Aj, φn+1(x) = (j − 1)/2n for all x ∈ A′
j, and φn+1(x) = (2j − 1)/2n+1

for all x ∈ A′′
j . Also, Aj = A′

j ∪A′′
j . Now consider any x ∈ Aj. Then, either x ∈ A′

j or x ∈ A′′
j . In the

first case,

φn(x) =
j − 1

2n
= φn+1(x).

In the second case,

φn(x) =
j − 1

2n
=

2j − 2

2n+1
<

2j − 1

2n+1
= φn+1(x).

We have now shown that φn ≤ φn+1 for all x ∈ Aj. However, we started with an arbitrary Aj, so

this must be true for all 1 ≤ j ≤ n2n. Finally, we also have that φn(x) ≤ φn+1(x) for all x ∈ Bn.

This is because Bn+1 ⊂ Bn and if x ∈ Bn+1, then φn(x) = n < n + 1 = φn+1(x). Conversely, if
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x /∈ Bn+1(x), then φn+1(x) has to be equal to the left-most endpoint of one of the added subintervals

we show in Fig. 5. This, as seen in the figure, has to be greater than or equal to n. Therefore,

φn(x) = n ≤ φn+1(x) for all x ∈ Bn but not in Bn+1, as well. Therefore, since we already said that

the sets Aj along with Bn form a cover of Ω, then φn ≤ φn+1 on all of Ω!

What is left to do now is to show that our sequence (φn) converges pointwise to f . Therefore,

consider an arbitrary x ∈ Ω. Since we allowed f to map to the extended real numbers, let us first

deal with the situation when f(x) = ∞. In this case, we know that x ∈ Bn for all n ∈ lN , just by our

definition of the sets Bn above. Therefore, φn(x) = n for all n ∈ lN . This is an unbounded increasing

sequence and clearly φn(x) →∞. We are now finished with this case.

Now we can suppose that f(x) is some finite real number. This means that we can choose some

n0 ∈ lN such that f(x) < n0. Then, recall that for a given term in our sequence of simple functions

φn, the definition of φn involves a partitioning of the interval [0, n). Therefore, we know that for all

n > n0, our function value f(x) must be located in one of the subintervals Ij, since f(x) < n0 implies

f(x) ∈ [0, n) for all n > n0. So, choosing this particular Ij, we know that

j − 1

2n
≤ f(x) <

j

2n

for all n > n0 from the definition of Ij for a particular n. However, from our definition of φn, we now

know that φn(x) = (j − 1)/2n. Therefore,

|f(x)− φn(x)| =
∣∣∣∣f(x)− j − 1

2n

∣∣∣∣ <

∣∣∣∣
j

2n
− j − 1

2n

∣∣∣∣ =
1

2n
.

Since we can make 1/2n arbitrarily small as we increase n, we have now proven that φn(x) → f(x).

Also, since our x was arbitrary, we have now shown the pointwise convergence. The last bit about

uniform convergence should be easy to see. If f is bounded, then f(x) < n0 for all x ∈ Ω and some

n0 ∈ lN . Therefore, from the preceding arguments,

|f(x)− φn(x)| < 1

2n
for all x ∈ Ω.

This is the condition for uniform convergence of φn → f .

3.3 The Lebesgue Integral

After our discussion of simple functions, the reader should have some idea of how to define the integral

of any measurable function. Specifically, it should be clear that our motivation is the approximation
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of measurable functions by simple ones. Thus, we can begin right away with a definition of the

integral of a nonnegative measurable function. In fact, mathematical literature tells us that there are

two equivalent definitions for such an integral. We will present both and refer the reader to pages

51 and 52 in Athreya’s book [Ath] for the outline of the proof that they are equivalent. The first

definition is stated on page 61 in Adams’ book [Ad], and the second definition is in [Ath] on page 50.

Definition 3.3.1. Let f : Ω → l̄R+ be a nonnegative measurable function and X ∈ F . The integral

of f over X with respect to µ is defined by

∫

X

f dµ = sup

{∫

X

φ dµ | 0 ≤ φ ≤ f where φ is a simple function.

}
.

Definition 3.3.2. Let f : Ω → l̄R+ be a nonnegative measurable function and X ∈ F . The integral

of f over X with respect to µ is defined by

∫

X

f dµ = lim
n→∞

∫

X

φn dµ,

where {φn}n≥1 is any sequence of nonnegative simple functions such that φn(x) ↑ f(x) for all x ∈ X.

We already know from our properties of integrals of simple functions, Thm. 3.2.6, that because

φ1 ≤ φ2 . . ., then the sequence (
∫

X
φi dµ) is also increasing. This means that our limit given in the

right hand side of the equality in Def. 3.3.2 is well defined. However, it remains to be seen that the

definition of the integral in Def. 3.3.2 remains the same for any given sequence of simple functions

such that φn ↑ f . So, we will now show this in a theorem. The proof follows the one outlined on

page 50 in Athreya’s book [Ath].

Theorem 3.3.3. Let {φn : Ω → l̄R+}n≥1 and {ψn : Ω → l̄R+}n≥1 be two sequences of simple

nonnegative functions such that φn(x) ↑ f(x) and ψn(x) ↑ f(x) for all x ∈ X where X ∈ F . Then,

lim
n→∞

∫

X

φn dµ = lim
n→∞

∫

X

ψn dµ.

Proof. First we will consider a particular function ψN where N ∈ lN . We want to show that for any

real number ρ ∈ lR such that 0 < ρ < 1, we have that

lim
n→∞

∫

X

φn dµ ≥ ρ

∫

X

ψN dµ.
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So, in order to do this, we will allow our simple function ψN be represented by ψN =
∑p

i=1 aiIAi
.

Then, we will consider the set Dn = {x ∈ X | φn(x) ≥ ρψN(x)}. Now, suppose that we have some

y ∈ Dn. Then, since this means that φn(y) ≥ ρψN(y). However, since φn(x) ↑ f(x) for all x ∈ X,

then φn+1(y) ≥ φn(y) ≥ ρψN(y), as well. We conclude that y ∈ Dn+1 and so, by a trivial induction,

D1 ⊆ D2 ⊆ . . .. Now consider the set D = {x ∈ X | f(x) ≥ ρψN(x)}. We want to show that

D =
⋃∞

n=1 Dn.

(⊆): Suppose that y ∈ D. This means that f(y) ≥ ρψN(y). However, by our construction of the

(ψi) sequence, we know that actually, f(y) ≥ ψN(y) > ρψN(y). Now, since φn(y) ↑ f(y), we can

choose an M ∈ lN such that (since f(y)− ρψN(y) > 0

f(y)− φM(y) < f(y)− ρψN(y) ⇒ φM(y) > ρψN(y).

We conclude that y ∈ DM and thus y ∈ ⋃∞
n=1 Dn.

(⊇): Let y ∈ ⋃∞
n=1 Dn. This means that there is some M ∈ lN such that f(y) ≥ φM(y) ≥ ρψN(y).

We now see that y ∈ D and we are done. Now that we have shown Dn ↑ D, consider again

that ψN(y) ≤ f(y) for all y ∈ X. Therefore, D = X. This means that for any particular Dn,

Dn ∪DC
n = X. Therefore, we can write our simple functions φn as φn = φnIDn + φnIDCn . From our

properties of integrals of simple functions,

∫

X

φn dµ ≥
∫

X

φnIDn ≥ ρ

∫

X

ψNIDn dµ = ρ

p∑
i=1

aiµ(Ai ∩Dn ∩X).

It should now be clear that since Dn ↑ X, then as n →∞, we have that µ(Ai∩Dn∩X) ↑ µ(Ai∩X).

Thus, we conclude that

lim
n→∞

∫

X

φn dµ ≥ ρ lim
n→∞

p∑
i=1

aiµ(Ai ∩Dn ∩X) = ρ

∫

X

ψN dµ.

However, we can let ρ be arbitrarily close to 1, so we find that limn→∞
∫

X
φn dµ ≥ ∫

X
ψN dµ for every

N ∈ lN . Therefore, we now see that

lim
n→∞

∫

X

φn dµ ≥ lim
n→∞

∫

X

ψn dµ.

The theorem follows by a parallel proof showing that we can get the opposite inequality to the one in

the equation above. Indeed, there is no reason we cannot reverse our argument by simple switching

all the inequalities. So, we are now done.
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Now that we have a well-defined notion of the integral of a measurable function, we can derive

some properties of these Lebesgue integrals. They all naturally follow from the properties given

for the integrals of simple functions. Indeed, using our Def. 3.3.1 and Def. 3.3.2, we can treat each

Lebesgue integral in terms of integrals of simple functions. Therefore, all of the arguments we used in

the previous section apply to this one. This is a great thing! We have managed to tackle the integrals

of very abstract, general functions through approximation by simple functions. It is worthwhile to

think about this in contrast to Riemann integration with which we are familiar with. This new

Lebesgue method is much more powerful because it allows us to integrate functions that do not have

a very structured domain. Indeed, our integral over X ∈ F only requires that X have an appropriate

measure µ and is part of the σ-algebra F . This means that X can be any of the various examples

we mentioned in Sec. 2.2.

We will now present the following results concerning the behavior of Lebesgue integrals. These

properties are identical to the ones for integrals of simple functions. Indeed, it should be clear that

all of the following follows from Thm. 3.2.6, Def. 3.3.1, and Def. 3.3.2. The statements of these

theorems are on page 49 in Athreya [Ath]. The proofs, which will not be included here, are outlined

on pages 189 to 191 in [Bu].

Theorem 3.3.4. Let f and g be two measurable nonnegative functions on (Ω,F , µ). Then, if X ∈ F ,

i. For α ≥ 0 and β ≥ 0,
∫

X
(αf + βg) dµ = α

∫
X

f dµ + β
∫

X
g dµ

ii. If f ≥ g almost everywhere in X, then
∫

X
f dµ ≥ ∫

X
g dµ.

iii. If f = g almost everywhere in X, then
∫

X
f dµ =

∫
X

g dµ.

The reader may have noticed that we haven’t dropped the qualifier “nonnegative” when describ-

ing the integrals of our measurable functions. Indeed, all of our theorems up to this point have

involved positive valued functions. However, we know that we can take integrals of functions that

yield negative values, as well. Indeed, we may recall that the Riemann integral definition made no

requirements concerning the values of f . If f was negative at a particular sampling point x∗i , then

we simply subtracted the area of the rectangle f(x∗i )(xi − xi−1) = −|f(x∗i )(xi − xi−1)| < 0 in our

Riemann sum. Thus, we want to define the integral of a measurable function in general (regardless

of whether it is positive or negative). The following definition is listed on page 54 in Athreya’s book.
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Definition 3.3.5. Let f be a real valued measurable function on (Ω,F , µ). Let f+ ≡ fI{f≥0} and

f− ≡ −fI{f<0}. The integral of f with respect to µ over X ∈ F is defined as
∫

X

f dµ =

∫

X

f+ dµ−
∫

X

f− dµ,

provided that at least one of the integrals on the right side is finite.

Now, notice that both f+ and f− as they are defined above are nonnegative measurable functions.

Thus, the definition makes sense provided either the f+ integral or f− integral is finite. Now, we

repeat this proviso because it is important. Recall from our discussion of the extended real numbers

that we cannot perform the operations ∞−∞ or −∞ +∞. Getting the latter computations in an

integral would be disastrous because the results of these operations are not defined. This is why we

need the proviso given.

Before we move on, it is important to mention a few more definitions. Indeed, mathematicians

often refer to seemingly archaic things like Lp spaces, L integrability, etc. So, let us make these

things clear. We will use the language in Arthreya’s book (page 54-55) [Ath].

Definition 3.3.6. Let f be a real valued measurable function on (Ω,F , µ). We say that f is

integrable, or L-integrable, with respect to µ if
∫
Ω
|f | dµ < ∞. Notice that since |f | = f+ + f−, then

this condition is the same as saying
∫

Ω
f+ dµ < ∞ and

∫
Ω

f− dµ < ∞. Whenever f is integrable, we

also say that f ∈ L(Ω,F , µ).

Definition 3.3.7. Let (Ω,F , µ) be a measure space that 0 < p ≤ ∞. Then, the collection of

functions Lp(Ω,F , µ) is defined as

Lp(Ω,F , µ) = {f : |f |p is integrable with respect to µ} =

{
f :

∫
|f |p dµ < ∞

}
for 0 < p < ∞,

and

L∞(Ω,F , µ) ≡
{

f : µ({|f | > K}) = 0 for some K ∈ (0,∞)

}
.

Notice that this last defined space, L∞, is simply the set of all functions that are bounded on Ω

except for possibly on a set A ⊂ Ω of measure zero. This is in accordance with our definition for the

other spaces since we know the integrability of a measurable function is independent of subsets of

measure zero of the domain of the function. With these definitions in mind, we see that it is trivial

to show that the conditions of Thm. 3.3.4 hold for all functions f ∈ L(Ω,F , µ), as well.
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3.4 Convergence Theorems

The last few sections provided us with the mathematical formalism for dealing with integrals of

arbitrary measurable functions. We proved that these integrals are well-defined and possess certain

natural properties. We have also shown that sets of measure zero do not influence the values of these

integrals. Now what we want to do is to prove some fundamental theorems about these Lebesgue

integrals. The first of these will be a fun, easy theorem that will be familiar to the reader from basic

probability theory. Specifically, we already have the mathematical machinery to prove Markov’s

inequality! Although it might not look explicitly like the inequality we are familiar with, we shall see

later that the following theorem is exactly what it claims to be. The proof is outlined on page 66 in

Adams’ book [Ad].

Theorem 3.4.1. (Markov’s inequality) Let f be a nonnegative measurable function. For X ∈ F and

α > 0, let Xα = {x ∈ X | f(x) ≥ α}. Then,

µ(Xα) ≤ 1

α

∫

X

f dµ.

Proof. We are given that f(x) ≥ α on Xα. Therefore, by our properties of the Lebesgue integral,

∫

Xα

α dµ ≤
∫

Xα

f dµ.

However, our constant function α is a simple function and can be written as αIΩ. But, because we

are only integrating over the space Xα, we have that
∫

Xα
αIΩ dµ = αµ(Ω ∩Xα) = αµ(Xα). Finally,

since Xα ⊆ X and f is nonnegative,
∫

Xα
f dµ ≤ ∫

X
f dµ (this follows easily from our definition of

the Lebesgue integral in terms of approximating sequences of simple functions in Def. 3.3.1). So, we

combine these inequalities to find that

αµ (Xα) ≤
∫

Xα

f dµ ≤
∫

X

f dµ.

We are now done.

It is often the case that we only know about a sequence of measurable functions that converge

to some other function. We begin to study the behavior of integrals with respect to such sequences

by considering the first important convergence theorem in the theory of the integral. The proof that

follows is outlined on pages 52 and 53 in Athreya’s book [Ath].
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Theorem 3.4.2. (The monotone convergence theorem (MCT )) Let (fn) be a sequence of nonnegative

measurable functions on (Ω,F , µ) and let f be such a function, also. Suppose that fn ↑ f almost

everywhere on Ω. Then, if X ∈ F ,

∫

X

f dµ = lim
n→∞

∫
fn dµ.

Proof. We will take advantage of our approximation methods with simple functions by considering

a sequence of simple functions {φn}n≥1 such that φn(x) ↑ f(x) for all x ∈ X. Now, consider

the set A ∈ F for which fn ↑ f . We know that µ(AC) = 0, since the condition fn ↑ f must

hold almost everywhere. Now, consider some N ∈ lN and a real number 0 < ρ < 1. Also, let

Dn = {x ∈ A | fn(x) ≥ ρφN(x)}. This should be familiar to the reader from the proof of Thm. 3.3.3.

From the same arguments given in that proof, if D = {x ∈ A | f(x) ≥ ρφN(x)}, then Dn ↑ D.

Similarly, since φN(x) ≤ f(x) for all x ∈ Ω (by the construction of our approximating sequence of

simple functions), then D = A. So, from the properties of the integral that we have established in

the previous section,

∫

X

fn dµ ≥
∫

X

fnIDn dµ ≥ ρ

∫

X

φNIDn dµ for all n ≥ 1.

Once again, because Dn ↑ D, and our measure function µ has the countable additivity property, we

know that
∫

X
φNIDn dµ ↑ ∫

X
φNIA dµ =

∫
X

φN dµ, where n → ∞. Consequently, we can take the

following limits:

lim
n→∞

∫

X

fn dµ ≥ ρ

∫

X

φN dµ.

Then, since our N ∈ lN was arbitrary, this must be true for all N ∈ lN . Finally, just as the

Thm. 3.3.3, we let ρ → 1. This allows us to conclude that limn→∞
∫

X
fn dµ ≥ ∫

X
φN dµ. Finally, by

letting N →∞ and letting φN approach f , we get that

lim
n→∞

∫

X

fn dµ ≥
∫

X

f dµ.

Finally, since fn ↑ f implies that f1 ≤ f2 ≤ . . ., we see from our Thm. 3.3.4 that

∫

X

fn dµ ≤
∫

X

f dµ for all n ∈ lN .

By taking the limit n →∞, we get the opposite inequality and, thus, the proof follows.
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This theorem allows us to make some great conclusions. One of the first things we can do is

consider the behavior of summations and integrals. Often, especially in physics, we haphazardly

exchange summation and integration symbols without every considering what the formal mathemat-

ical reason is behind the exchange. In the following corollary, we show that this makes sense for

nonnegative measurable functions. The proof is on page 75 in Adams’ book [Ad].

Corollary 3.4.3. Let (fn) be a sequence of nonnegative measurable functions on (Ω,F , µ). Then,

∫

X

( ∞∑
i=1

fi

)
=

∞∑
n=1

∫

X

fn dµ.

Proof. We just have to consider the functions Fn =
∑n

i=1 fi. Then, it is clear, since the fi’s are

nonnegative, F1 ≤ F2 ≤ F3 ≤ . . .. This means Fn ↑
∑∞

i=1 fi. Also, all the Fn are measurable since

they are sums of measurable functions. This means we can apply the MCT directly to the sequence

(Fn) and the limiting function
∑∞

i=1 fi. So, by the MCT and the properties of the Lebesgue integral

we get that for any X ∈ F ,

∫

X

( ∞∑
i=1

fi

)
dµ = lim

n→∞

∫

X

Fn dµ = lim
n→∞

∫

X

n∑
i=1

fi dµ = lim
n→∞

∑
i=1n

∫

X

fi dµ =
∞∑

n=1

∫

X

fn dµ.

The MCT also allows us to prove a theorem, or corollary, that is called Fatou’s lemma. We mention

all three qualifications of a provable statement because Fatou’s lemma is the middle stepping stone

between two major convergence theorems in integration theory. Indeed, we will need the result that

follows to prove the famous Lebesgue dominated convergence theorem (DCT). Indeed, the primary

purpose of this section is to prove the following sequence of theorems:

MCT ⇒ Fatou’s lemma ⇒ DCT

Right now we are on this middle block. Let us state it and prove it. The proof will follow the two

versions given in Adams on page 78 and Athreya on page 54.

Theorem 3.4.4. (Fatou’s lemma) Let (fn) be a sequence of nonnegative measurable functions on

(Ω,F , µ). Then,

lim inf
n→∞

∫

X

fn dµ ≥
∫

X

lim inf
n→∞

fn dµ.
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Proof. Let us construct a new sequence of functions (gn) such that for each n ∈ lN , gn(x) ≡
inf{fj(x) | j ≥ n}. Also suppose that we have a sequence of real numbers {an}n≥1 defined by

an ≡ inf{∫
X

fj dµ | j ≥ n}. Then, from the definition of the infimum, we see that

g1 ≤ g2 ≤ . . . and a1 ≤ a2 ≤ . . .

However, from our definition of f and from the fact that the infimum limit, the supremum limit, and

the limit of convergent sequences are all identical, we conclude that lim infn→∞
∫

X
fn dµ = limn→∞ an

and lim infn→∞ fn = limn→∞ gn. However, because our inf{fj(x) | j ≥ m} is the greatest lower bound

of the set of functions fn where n ≥ m, we know that for n ≥ m, fn ≥ gm. Hence, by the monotinicity

property of the integral,
∫

X
fn dµ ≥ ∫

X
gm dµ for all n ≥ m. Therefore, am ≥ ∫

X
gm dµ for all m ∈ lN

(since am is the greatest lower bound). Consequently, by the MCT,

lim inf
n→∞

∫

X

fn dµ = lim
n→∞

an ≥ lim
n→∞

∫

X

gn dµ =

∫

X

lim inf
n→∞

fn dµ.

We are now done with the proof.

We will now consider perhaps the most important result in integration theory. This is the primary

result we will be using in proving later theorems. The proof of the theorem follows the one given on

pages 78 and 79 in Adams’ book [Ad].

Theorem 3.4.5. (Lebesgue dominated convergence theorem (DCT )) Let (fn) be a sequence of

measurable functions on (Ω,F , µ) such that the sequence converges pointwise to some function f for

every point x ∈ Ω. Let X ∈ F . Then, if there exists a function g ∈ L(Ω,F , µ) such that

|fn(x)| ≤ g(x) almost everywhere in X for every n,

then the function f is also in L(Ω,F , µ) and
∫

X

f dµ = lim
n→∞

∫

X

fn dµ.

In addition,

lim
n→∞

∫

X

|f − fn| dµ = 0.

Proof. We recognize right away by Fatou’s lemma that
∫

X

|f | dµ =

∫

X

lim inf
n→∞

|fn| dµ ≤ lim inf
n→∞

∫

X

|fn| dµ ≤
∫

X

|g| dµ < ∞,
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since g ∈ L(Ω,F , µ). Thus, we conclude f ∈ L(Ω,F , µ), as well. To prove the rest of the theorem,

consider our hypothesis that |fn| ≤ g almost everywhere in X. Now, even though this is not true

everywhere, we said in previous discussions that the integrals of two functions are the same if the

two functions differ from each other only on a set of measure zero. This means that we can redefine

the fn in such a way that |fn| ≤ g everywhere in X. From our previous discussions, this can be done

without a loss of generality. Therefore, we conclude that g + fn is a nonnegative function for every

n ∈ lN . We use Fatou’s lemma again and find that
∫

X

lim inf
n→∞

(g + fn) dµ ≤ lim inf
n→∞

∫

X

(g + fn) dµ.

But our function g does not change with n and so lim infn→∞(g + fn) = g + lim inf fn = g + f .

Again, this last equality follows from the fact that the supremum limit, infimum limit, and the limit

of convergence sequences are identical. This is something we have used over and over. Similarly, we

can make the following statement about the integrals:

lim inf
n→∞

∫

X

(g + fn) dµ =

∫

X

g dµ + lim inf
n→∞

∫

X

fn dµ.

Using the result we found from Fatou’s lemma, we see that
∫

X

f dµ ≤ lim inf
n→∞

∫

X

fn dµ.

Of course, we also have the case that g− fn is a nonnegative function. Thus, by a parallel argument

to the one given above, if we replace all of the fn’s with −fn and f ’s with −f ’s, we get that

−
∫

X

f dµ ≤ lim inf
n→∞

(
−

∫

X

fn dµ

)
.

However, notice that for any sequence of real numbers (an), lim supn→∞(−an) = − lim supn→∞(an).

This is because we are simply reflecting our real numbers around the 0 pivot point. Indeed, we are

simply switching all the inequalities, since a < b implies −a > −b for all a, b ∈ lR. Therefore, with

this equality in mind, we see that

−
∫

X

f dµ ≤ − lim sup
n→∞

(∫

X

fn dµ

)
.

Multiplying both sides of the inequality about by (−1) and flipping the inequality yields
∫

X

f dµ ≥ lim sup
n→∞

(∫

X

fn dµ

)
.
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However, it is true in all cases that the infimum limit is less than or equal to the supremum limit of

a sequence. Therefore, we have squeezed our integral
∫

X
f dµ so that it is now equal to

∫

X

f dµ = lim inf
n→∞

(∫

X

fn dµ

)
= lim sup

n→∞

(∫

X

fn dµ

)
= lim

n→∞

(∫

X

fn dµ

)
.

We have now proven the first part of the theorem. For the second part, instead of looking at the

functions fn and g, we look at f̃n ≡ |f − fn| and g̃ ≡ g + |f |. Again, we see that g̃ + f̃n =

g + |f | + |f − fn| ≥ g + |f | + ||f | − |fn|| ≥ g + |f | + |f | − |fn| is a nonnegative function because

g + 2|f | ≥ g ≥ |fn|. In the − case, g̃− f̃n = g + |f | − |f − fn| ≥ g + |f | − (|f |+ |fn|) = g− |fn| ≥ 0 is

a nonnegative function, also. Therefore, we can apply the exact same arguments we used about fn

and g. In this case, though, we have that f replaced by limn→∞ |f − fn| = |f − f | = 0. Therefore,

making the substitutions in the final step of the argument above, we get that
∫

X

|f − f | dµ = 0 = lim
n→∞

∫

X

|f − fn| dµ.

We have now shown both parts of the theorem.

An often used corollary of the DCT is something called the bounded convergence theorem, or BCT.

It trivially follows from the previous theorem.

Corollary 3.4.6. (The bounded convergence theorem (BCT ) ): Let µ(Ω) < ∞. Then, if there exists

a real number 0 < k < ∞ such that |fn| ≤ k almost everywhere in Ω and fn → f almost everywhere

(for each n ≥ 1), then

lim
n→∞

∫

Ω

fn dµ =

∫

Ω

f dµ and lim
n→∞

∫

Ω

|fn − f | dµ = 0.

Proof. Since our DCT was proven for any integrable function g such that |fn(x)| ≤ g(x) almost

everywhere in some X ∈ F , then we can just let g(x) = k and X = Ω (of course, the BCT will also

be valid for any X ∈ F , just as the DCT). We know that k is integrable since it is just a constant

and can be represented by a simple function. Anyway, we now see that the theorem must follow by

the DCT.

Another important named theorem that follows from the DCT is something called Scheffe’s

theorem. It tells us something nice about collections of nonnegative measurable functions. The proof

follows the one presented on page 64 in Athreya’s book [Ath].
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Theorem 3.4.7. Let (fn) be a collection of nonnegative measurable functions on a measure space

(Ω,F , µ). Also, suppose that this sequence converges pointwise to a function f almost everywhere in

Ω. Also, suppose that
∫
Ω

fn dµ → ∫
Ω

f dµ and f ∈ L(Ω,F , µ). Then,

lim
n→∞

∫

Ω

|fn − f | dµ = 0.

Proof. Let us construct a new sequence of functions (gn). We will say that for each n ∈ lN , gn =

f − fn. Then, since fn → f almost everywhere, we see that gn = g+
n − g−n must go to zero almost

everywhere, and so each function g+ and g− must go to zero almost everywhere. Again, recall that

the superscripts on these functions simply denote the positive and negative parts of the function

g. This kind of language is analogous to the language we employed when defining the integral of

an arbitrary measurable function (see Def. 3.3.5). Anyway, we see that we also have 0 ≤ g+
n ≤ f ,

because the fn’s are nonnegative functions and we defined gn = g+
n − g−n = f − fn which means that

0 ≤ g+
n ≤ gn ≤ f , since g+

n is nonnegative by definition. Anyway, we also have
∫
Ω

f dµ < ∞ by our

hypothesis. So, we have a sequence of functions g+
n converging pointwise to 0, bounded above by the

function f . Therefore, we can apply the DCT to find that

∫

Ω

g+
n dµ → 0.

However, we also hypothesized that
∫

Ω
fn dµ → ∫

Ω
f dµ. Therefore,

∫
Ω

gn dµ =
∫
Ω

fn dµ−∫
Ω

f dµ → 0.

It follows from the definition of g−n that
∫

Ω
g−n dµ =

∫
Ω

g+
n dµ−∫

Ω
gn dµ → 0. Now that we have shown

the convergence of the integrals of our positive and negative parts of gn, we conclude that

∫

Ω

|gn| dµ =

∫

Ω

|fn − f | dµ =

∫

Ω

g+
n dµ +

∫

Ω

g−n dµ → 0 as n →∞.

We are now done with the proof!

We conclude this section by mentioning that the named theorems we have shown above are very

powerful. They tell us about the behavior of integrals we might have no idea how to compute,

given that we know something about the integrand. For example, the DCT tells us that if we can

construct a sequence of functions that converge to some limiting function and that are bounded by

an integrable function, then we will be able to say something about the integrals of these functions

and the integral of the limiting function. Indeed, we can say that the limit of the integrals of

the sequence of functions converges to the integral of the limiting function. This may seem like a
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nonsense sentence, but what we are really saying is that we are able to exchange the limit and integral

operations. Again, this is something we often do (especially naive physicists), without ever thinking

about the powerful mathematical formalism that we are invoking. We illustrated in this section the

difficulty and depth of the mathematical rigor behind such seemingly innocuous exchanges. Also, we

have shown that these convergence theorems are very powerful tools because we sometimes only have

limited information about a particular function and are forced to approximate it with sequences of

other functions.

3.5 Convergence

Now, the reader may have noticed that we have discussed many different kinds of convergence in

the previous sections of this paper. Indeed, it is often very confusing to think about what kind

of particular convergence one is talking about. However, it is very important that such things are

well-defined. Convergence will be a fundamental issue in the sections that follow. Thus, in order to

eliminate the confusion, the objective of this section is to put in one place all of the different kinds

of “convergences”. Specifically, we want to list all of the different ways a sequence of measurable

functions (fn) converges to a limiting function f . So, in the definitions that follow, we will always

assume that (fn) is a sequence of measurable functions on (Ω,F , µ). Let us begin.

Definition 3.5.1. We say that (fn) converges to f pointwise if given any x ∈ Ω, we have the

following:

lim
n→∞

fn(x) = f(x) for all x ∈ Ω.

Indeed, pointwise convergence simply means that the sequence of real numbers (fn(x)) (given by the

value of the functions fn at each point x ∈ Ω) converges to the real number f(x).

Definition 3.5.2. (fn) converges to f almost everywhere in Ω if there exists a set A ∈ F such that

µ(A) = 0 and

lim
n→∞

fn(x) = f(x) for all x ∈ AC.

In other words, convergence almost everywhere is simply pointwise convergence on all points in Ω\A,

where A is some subset of Ω with measure 0.

Definition 3.5.3. We say that (fn) converges to f in L(Ω,F , µ) if
∫
Ω
|fn| dµ < ∞ for all n ≥ 1,∫

Ω
|f | dµ < ∞, and

lim
n→∞

∫

Ω

|fn − f | dµ = 0.

40



We will denote such a convergence by fn → f in L(Ω,F , µ).

4 Probability

4.1 Kolmogorov’s Probability

Of course, as we mentioned previously, the mathematical language we have been using has direct

analogues to probabilistic language. Indeed, the notions of measure spaces, measurable functions, and

integrals have their counterparts in probability theory. The analogy between these measure theoretic

concepts and probability theory was first articulated by Kolmogorov in 1956 [Ath]. The title of this

subsection reflects this historical fact. So, to begin, let us redefine our notion of a measurable space

a little bit. So, we call that set Ω a sample space. This is a set of all possible outcomes of some sort.

Therefore, we call each element x ∈ Ω a sample point. Now, it may be the case that many sample

point all have some characteristic property. For example, when we throw a six-sided die, there are

many orientations of the die that yield a six on top. Indeed, we can throw the die so that the six

mark is facing us, or is side-ways, or is upside down, etc. However, we want to be able to characterize

a “six on top” as an event. Thus, an event is a subset of our sample space Ω. Then, we can naturally

think about our σ-algebra F as the set of all events. So, what is our measure µ, then? It is just the

probability of an event! Indeed, we are able to say that for any event X ∈ F , µ(X) represents the

probability of this event occurring. The only difference between this probabilistic µ and the measure

µ we have been talking about is that we require that µ(Ω) = 1.

Now, before we continue, we have to make sure that our properties of a σ-algebra make sense for

the space of all possible events. So, let us go through the different properties of σ-algebras that we

had.

i. Ω ∈ F : This condition makes sense because we need to be able to say that any sample point

in our sample space is something that occurs. It does not necessarily ever have to occur, but it

must be such that we can measure its probability of occurring. Indeed, this is how we usually

define our sample space. For example, when we list all the possible ways that we can throw

a six-sided die and put them in Ω, we do not include something silly like the set of all trees

in Cleveland. We cannot measure the probability of a tree! Thus, we require that we are able

to measure the probability of our entire sample space. Further, since our sample space lists all
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the possible events that occur, we also know that µ(Ω) = 1.

ii. A ∈ F implies AC ∈ F . This assumption is basically saying that if we can measure the

probability of an event occuring, then we can measure the probability of the event not occuring.

Again, this is a very reasonable assumption.

iii. A,B ∈ F implies A ∪ B ∈ F . This assumption means that if we can measure the probability

of event A occurring, and if we can also measure the probability of event B occurring, then we

can certainly measure the probability of either of the events occurring. Of course, probability

theory must include such an assumption if we want to look at multiple events, such as the

probability of rolling either a two or a three on a six-sided die.

iv. An ∈ F for n ≥ 1 implies
⋃∞

n=1 An ∈ F and
⋂∞

n=1 An ∈ F . This assumption allows us to not

limit ourselves to finite numbers of outcomes. Indeed, sometimes we want to be able to find the

probability that any (union) of a countable number of events occurs, or the probability that

all (intersection) the events occur. A very simple example of a probabilistic experiment that

requires such a countable infinity is the tossing of a two-sided coin until the first head comes up

([Ath] pg. 190). Indeed, although the chances are very small, we can toss the coin an arbitrarily

large number of times before we get the first heads. Thus, the nature of probabilistic events

requires us to make this assumption.

So, now that we have gone through all the relevant properties of σ-algebras, we see that it really

does make sense that each of our events X are elements of a σ-algebra F associated with Ω. There

is still the matter, however, of the properties associated with the measure µ. We have to make sure

that these properties make sense in the context of probability. Let us now list these properties and

discuss them.

i. µ(A) ∈ [0, 1] for all A ∈ F . Now, this assumption is basically saying that we do not allow for

negative probabilities. Also, we cannot have a probability greater than 1 since we already know

that µ(Ω) = 1, and A ⊆ Ω.

ii. µ(∅) = 0. This basically says that if our event has no associated sample point in it, that is, the

subset of Ω is empty, then the probability of that event occurring is zero. This is the same as

thinking about the probability of a seven occurring on a six-sided die. We know that since a

seven is not even printed on the die, then there are no sample points in Ω that correspond to

such an event. Therefore, this subset in F is an empty set and we expect that µ(∅) = 0.
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iii. For any pairwise disjoint collection of sets A1, A2, . . . ∈ F with
⋃

n≥1 An ∈ F , µ
(⋃

n≥1 An

)
=∑∞

n=1 µ(An). Notice that disjoint events in probability are mutually exclusive. Indeed, if for two

events A and B, A ∩B = ∅, then there are no possible ways of the two events both occurring.

Therefore, it makes sense that the probability of either of these two mutually exclusive events

occurring is just the sum of the individual probabilities: µ(A∪B) = µ(A)+µ(B). We can also

think about this in terms of our die example. Rolling a two and rolling a one are two mutually

exclusive events. Thus, the probability of rolling either is just 1/6 + 1/6 = 1/3, just as we

expect. So, this property is allowing us to make such statements about probabilities. It also

allows us to not limit ourselves to finite numbers of outcomes. Indeed, we see that this mutual

exclusivity condition is being applied to a countable infinite number of sets.

So, we have now gone through the definitions of F and µ and found that each property they satisfy

has a direct correlation to a natural property of either an event or a probability. Thus, we can now

move on to define some other notions in probability theory that have direct connections to other

measure theoretic concepts we described.

The next interesting definition we will have is that of a random variable.

Definition 4.1.1. Let (Ω,F , µ) be a probability space and X : Ω → lR be a measurable function.

Then, X is called a random variable on (Ω,F , µ).

Thus, measurable functions from sample spaces to the real numbers are random variables! This

should make intuitive sense. For example, the outcome of a six-sided die: 1, 2, 3, 4, 5, 6 is a random

number. But, what does this mean? This means that for every possible throw of our die (which may

include all of the different physical determinants of a die roll, such as wind speed, friction between

the die and table, etc.), that is for every sample point x in our sample space Ω, there is an associated

result: 1, 2, 3, 4, 5, 6 in the real numbers. Therefore, the outcome of the die roll is really a function

that maps all the possible sample points to a particular numeric result. The condition that such a

function is measurable makes sense because we know that outcomes behave nicely with respect to

the subsets of Ω. What we mean by this is that an outcome of a six-sided die, say, corresponds to

the event (subset of Ω) that a six was rolled. Thus, random variables must be associated with subsets

of Ω whose probability we can measure. To drive this point home, let us think about our condition

for measurable functions f . We have that for each α ∈ lR, {x | f(x) ≤ a} ∈ F . This is simply saying

that if we take a particular random number, a, say, and if we look at the sample points associated

with that number, then the set of all such sample points that map to a (or anything less than a, for
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that matter) has to be a subset of Ω whose probability we can measure. In other words, we expect

that for any given range of our function, the associated domain is in F . So, now that we have our

definition of a random number, we can do all sorts of fun things because random variables are just

measurable functions! Indeed, given that we already went through all that trouble defining integrals

of measurable functions, we can now apply the same thing to random variables.

4.2 Random Variables

From now on, we will refer to random variables as X. This is a very common convention. However,

it is important to keep in mind that X is really a function. There is nothing particularly variable

about it! Indeed, the reason we call it variable is because in a probabilistic experiment, we usually

have no idea what particular sample point in Ω maps to a particular event. Indeed, all we know is

the value of X. Anyway, the first thing to look at is the expected value of a random variable. This

is the value that we get from the variable on average.

Definition 4.2.1. Let X be a random variable on (Ω,F , µ). The expected value of X, denoted by

E(X), is defined as

E(X) =

∫

Ω

X dµ,

provided the integral is well defined.

Let us give a very easy example in terms of our six-sided die. Let X be the random variable

that describes the numeric outcome of a die roll. This means that X can only take on the values

1 through 6. This is great because this means that X is not just a measurable function, but it is

a simple function! So, to compute our integral, let’s partition our sample space Ω into 6 partitions

A1, A2, . . . A6 that correspond to the sample points that yield a roll of one, two, etc. Notice that

since two of these events can’t possibly happen together, the Ai’s are mutually disjoint and partition

Ω. Therefore, our random variable X can be written as the sum

X =
6∑

i=1

i IAi
.

We now have to make an assumption about our sets Ai. We will suppose that our die is fair. This

means that there are equally many possible die rolls that result in a one, or a two, or a three, etc.

In other words, we are saying that the die isn’t weighted and that the conditions are such that
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no side of the die has more possible rolls associated with it. Anyway, if this is the case, then we

expect the sizes (probabilities) of the sets of sample points associated with each outcome to be the

same. Mathematically, then, µ(A1) = µ(A2) . . . = µ(A6). However, since these Ai’s partition Ω,

µ(
⋃6

i=1 Ai) = µ(Ω) = 1 =
∑6

i=1 µ(Ai). Consequently, µ(Ai) = 1/6 for all i = 1, 2, . . . , 6. Now that

we have established the probabilities of these events, we can use our definition of the integral of a

simple function to compute the expected value of the die roll:

E(X) =

∫

Ω

X dµ =
6∑

i=1

iµ(Ai) =
1

6

6∑
i=1

i =
21

6
= 7/2

We can think about the number E(X) in another way. Suppose we throw our six-sided die n

times. We can consider each toss Xi as being a random variable, i.e. a measurable function from

the sample space Ω to the real numbers. Then, we construct a sequence of functions (Sn) as follows.

Given any n ∈ lN , Sn(x) = 1
n

∑n
i=1 Xn(x) for every x ∈ Ω. The sequence (Sn) must be a sequence

of random variables because we stated in Sec. 2.3 that the finite sum of measurable functions is a

measurable function. Here Sn is the random variable that corresponds to the average of n die rolls,

or the number we get by writing down n die roll results and dividing their sum by the total number

of rolls. We may now say that our average of the rolls will converge in probability to E(X). This

means that for every ε > 0, µ({x ∈ Ω : |Sn(x) − E(X)| < ε}) → 1 as n → ∞ (where E(X) = 7/2).

In other words, as we toss the die more and more often, the chance that the average of the rolls is

close to 7/2 becomes almost certain (approaches probability 1). Such a convergence is called a weak

law of large numbers. This is a fundamental result in probability theory. However, it is tangential to

our discussion and so we will not prove it. We refer the interested reader to page 238 in [Ath] for an

outline of the argument.

Some other important definitions in probability theory include those of a probability distribution

function and cumulative distribution function, or cdf, of a random variable X. We shall define these

now.

Definition 4.2.2. Let X be a random variable on (Ω,F , µ). Let

FX(α) ≡ µ({x ∈ Ω | X(x) ≤ α}), where α ∈ lR.

Then we call the function FX a cumulative distribution function (cdf) of X.

Definition 4.2.3. Let X be a random variable on (Ω,F , µ). Let

PX(A) ≡ µ(X−1(A)) for all A ∈ B(lR).
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Then we call the function PX a probability distribution function (pdf) of X.

Notice that these definitions simply describe probabilities of particular random numbers occuring.

For the cdf, we are looking at the probability that our random number X is less than or equal to

some number α ∈ lR. For the pdf, notice that we are simply mapping nicely behaved subset of the

real numbers (the Borel sets) that our function X may take on to the subset of Ω that corresponds

to this Borel set (X−1(A)). Then, the pdf is just the probability that our random variable X is one

of the values in this Borel set. It makes sense to define a pdf because we often do not have a discrete

random variable. For instance, we can think about throwing a baseball into the air and measuring

the maximum height it attains with respect to the ground. This will naturally be a random variable

because we cannot possibly control all of the conditions that determine the height of the ball. Also,

the actual value of the height will be some positive real number. Therefore, it is not useful to talk

about the probability of a particular number occurring, such as 2.233 meters. There are uncountably

many real numbers, and the probability (measure) of a particular value occurring is zero. However,

it is possible to assign a non-zero probability to a range of heights. Indeed, we can consider the

probability that the ball reaches a height between 2.3 and 2.4 meters. This is analogous to finding

the pdf of the Borel set A = [2.3, 2.4].

One of the ways probability differs from measure theory is in the other ways we can describe

events. Indeed, we are not limited to just looking at events and their unions, complements, and

intersections. An important concept in probability is the idea of independent events. We will define

them using the language in Athreya’s book on page 219 [Ath].

Definition 4.2.4. Let (Ω,F , µ) be a probability space and {Aα |α ∈ Λ} ⊂ F be a collection of

events (Λ denotes some arbitrary indexing set). We call these events independent with respect to µ

if for every finite subcollection {Aα1 , Aα2 , . . . , Aαn},

µ

(
n⋂

j=1

Aαj

)
=

n∏
j=1

µ(Aαj
).

Also, we may have the case that we only have a finite collection of events {A1, A2, . . . , An}. Then, if

µ(Ai ∩ Aj) = µ(Ai)µ(Aj) for each i and j such that i 6= j, we say that our sets in the collection are

pairwise independent.

In order to illustrate these definitions, suppose that we have two events A,B ∈ F . Then, suppose

that we know the event B occurred. Now we want to know what is the probability that event A
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occurred given that event B occurred. Clearly this has to be the ratio of the probability that both

the events occur to the probability that event B occurs. Mathematically, we write this fraction as

µ(A ∩ B)/µ(B). Now, if the two events are independent, then we know that this ratio (also called

the conditional probability of A given B) is just equal to µ(A). This means that the probability

of A occurring given B occurred is the same as the probability of A occurring independent of our

knowledge of B. So, we now have our conceptual definition of independence. We say that events are

independent when the knowledge about the outcome of one event tells us nothing about the outcome

of another event. Finally, we may extend the concept of independence to random variables. In this

case, we say that two random variables X : Ω → l̄R and Y : Ω → l̄R are independent if for any real

numbers a, b ∈ l̄R, the events {x ∈ Ω : X(x) ≤ a} and {x ∈ Ω : Y (x) ≤ b} are independent according

to Def. 4.2.4 above (pg. 221 in [Ath]).

Before we move on to ergodic theory, it is important to emphasize the idea of convergence in

probability theory. We already talked about this in the die roll example described above. However,

in order to facilitate later proofs, we present the following definition.

Definition 4.2.5. Suppose we have a sequence (Xn) of random variables on a probability space

(Ω,F , µ). Then, we say that this sequence converges with probability 1 to a random variable X if

there exists a set A ∈ F such that

µ(A) = 1 and for all x ∈ A, lim
n→∞

Xn(x) = X(x).

In other words, we say that Xn → X with probability 1, or (Xn) converges to X pointwise almost

everywhere in A.

5 The Ergodic Theorem

5.1 Transformations

We finally move on to ergodic theory. In very broad terms, ergodic theory is the study of trans-

formations of measure spaces. In all of our previous discussions, we have assumed that our spaces

(Ω,F , µ) remain static. Indeed, if we look at the statements of all the theorems we have proven,

we have always stated something like this at the beginning: Let (Ω,F , µ) be a measure space. Now

we want to be able to take our space Ω, and map it into itself via some function T : Ω → Ω. Of
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course, if we do this arbitrarily, we can really ruin all of our underlying measure structure. Indeed, it

might be the case that the transformation T will map subsets of Ω that used to be in our σ-algebra

F to subsets that are not in the σ-algebra! This would be disastrous because we would lose our

ability to measure these subsets with our measure µ. Thus, ergodic theory concerns itself with those

transformations that preserve the measure theoretic structure of the space. Indeed, we have to make

sure that the transformations are measurable. Let us now define this term.

Definition 5.1.1. Let (Ω,F , µ) be a measurable space. Then, we call the function T : Ω → Ω a

measurable transformation if

T−1(A) ∈ F for all A ∈ F .

However, we are not quite finished. Just because we know that the transformation preserve the

measurability of our subsets of Ω, it doesn’t mean that the actual sizes of the subsets remain the

same as we apply the transformation T on them. Therefore, ergodic theory requires us to look at

measure-preserving transformations. These transformations not only conserve the structure of F ,

but also make sure that the structure of our measure µ is preserved. Specifically, if we look at any

particular subset A ∈ F , then all of the points in Ω that are mapped to this subset by T , i.e. T−1(A),

must have the same size as A. In other words, we do not stretch or shrink our measure on Ω by

applying the transformation. This is illustrated in Fig. 7. To make this notion of measure-preserving

transformations a little more formal, we have the following definition. From Athreya’s book on page

40:

Definition 5.1.2. First, let (Ω,F , µ) be a probability space and T : Ω → Ω be a measurable

transformation. Then, T is called measure preserving on (Ω,F , µ) if for all A ∈ F , µ(T−1(A)) = µ(A).

To test out these issues, let us do a little exercise suggested by Athreya on page 272 [Ath]. Suppose

that we have Ω = [0, 1] and F = B([0, 1]), and we let µ be the Lebesgue measure. Then, we define

our transformation in the following way

T (x) =





2x if 0 ≤ x < 1
2

2x− 1 if 1
2
≤ x < 1

0 if x = 1

An illustration of this transformation is given in Fig. 8. We see in the figure that the transformation

T maps the interval [0, 1] into itself. In doing so, T “stretches” the two halves of the interval into
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Figure 7: This illustrates what we mean, conceptually, by a measure-preserving transformation T on

a measure space (Ω,F , µ).

“strips”. Although only a single point is transformed in the figure, the reader may iterate other

points in the [0, 1] interval by using a straightedge and performing the graphical analysis illustrated

for point z in Fig. 8. The collection of points {z, T (z), T 2(z), . . .} for some z ∈ [0, 1] is called the

orbit of z under T .

We want to know if T is a measure-preserving transformation on [0, 1]. Recall from our discussion

of the Borel σ-algebra, that B is the σ-algebra that is generated by open subsets of lR. In this case,

we are only looking at the Borel σ-algebra generated by open subsets of [0, 1]. So, to show that T is

measure-preserving, we will prove that T preserves the measure of all open subintervals of [0, 1]. This

is sufficient because we know from our discussion in Sec. 2.2 that the Lebesgue measure of a subset

of the real numbers does not change if we remove or add any countable set of real numbers to the

subset. Therefore, showing that the measures of open intervals in [0, 1] are preserved implies that the

measures of all other intervals in [0, 1] are preserved, as well. Further, by the additivity property of

the measure, we know that all other measurable subsets of [0, 1] will have a preserved measure under

this transformation T . To summarize, if the measures of all open subintervals of [0, 1] are preserved,

then so are the measures of all Borel subsets of [0, 1]. For brevity, we have omitted a formal proof of

this fact and simply discussed the reasons why this is the case.
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Figure 8: This is an illustration of the transformation T defined in the exercise on page 272 in [Ath].

The point z is an example of a “starting position” for the transformation T . This figure shows the

first few points in the orbit of z under T (checkered points). The dotted y = x line provides a visual

guide for performing these iterations.

Hence, we will only consider open intervals (a, b) where 0 < a < b < 1. We already know that

µ((a, b)) = b− a from our discussions of the Lebesgue measure. So, suppose that our transformation

T mapped some subset of the real numbers to an interval (a, b). What is T−1((a, b))? Well, it has to

be the set of all x ∈ [0, 1] such that a < T (x) < b. Now, notice that T (x) = 2x for all 0 ≤ x < 1/2.

Therefore, the interval [0, 1/2) gets mapped to [0, 1). This is the first dark diagonal line on the left-

hand side of Fig. 8. Hence, since (a, b) ⊂ [0, 1), then we know that (a/2, b/2) ⊂ T−1((a, b)). The other

possibility is that 1/2 ≤ x < 1. In this case, we know that T (x) = 2x − 1. Therefore, our interval

[1/2, 1) get’s mapped to [0, 1), also. This is the second dark diagonal line from the left in Fig. 8. We

see again that since (a, b) ⊂ [0, 1), (a/2 + 1/2, b/2 + 1/2) ⊂ T−1((a, b)). Now, the other possibilities

for x are just the endpoints of the interval [0, 1]. However, T (1) = 0 and T (0) = 0. Consequently,
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these end points cannot be in T−1((a, b)) since 0 < a < b < 1. Anyway, we have now found the

regions in [0, 1] that map to (a, b) under T . But, consider that the intervals (a/2 + 1/2, b/2 + 1/2)

and (a/2, b/2) are mutually disjoint since 0 < a < b < 1. Therefore,

µ(T−1((a, b))) = µ

((
a

2
,
b

2

)
∪

(
a

2
+

1

2
,
b

2
+

1

2

))

= µ

((
a

2
,
b

2

))
+ µ

((
a

2
+ 1,

b

2
+ 1

))
=

b

2
− a

2
+

b

2
+

1

2
− a

2
− 1

2
= b− a!

We have now shown that µ(T−1((a, b))) = µ((a, b)). Thus, T must be a measure-preserving transfor-

mation. So, in this example we have seen how to figure out if a transformation is measure preserving.

Indeed, we have to consider very carefully what subsets of our set Ω map to the particular A ∈ F
we are looking at. As we have seen in this example, it can often be that two disjoint subsets map to

the particular subset. The measure T can split and join together subsets of Ω as it pleases, as long

as the total area of these subsets remains the same as we transform our set Ω.

We now need one more condition on the transformation T that allows us to talk about ergodicity.

This is the notion of an ergodic transformation. We will first define it and then talk about it.

Definition 5.1.3. Let T be a measure preserving transformation on a probability space (Ω,F , µ). A

set A ∈ F is T -invariant if A = T−1(A). Now, if A is T -invariant implies that µ(A) = 0 or µ(A) = 1,

then we say that T is ergodic with respect to µ.

At this point, we will not be able to say much conceptually about these ergodic transformations.

Indeed, right now, we can only leave this concept at the level of the definition. We will require

the powerful Ergodic Theorem to make some conceptual statements about ergodic transformations.

However, before we leave this definition alone, we can give an easy example of a transformation

that is measure preserving, but not ergodic! This example is found in Athreya’s book on page 273.

Anyway, suppose that our sample space Ω = {x1, x2}, such that x1 6= x2. Then, let us define our

transformation T : Ω → Ω such that T (x1) = x2 and T (x2) = x1. Now, suppose that our measure µ is

just µ({x1}) = µ({x2}) = 1/2. So, it is almost trivial to show that T is measure preserving. Indeed,

this can be easily checked because we have so few possible subsets of Ω. In fact, we can specify

the entire powerset of Ω: P(Ω) = {∅, {x1}, {x2}, Ω}. We see that µ(T−1({x1})) = µ(T−1({x2})) =

µ({x1}) = µ({x2}) = 1/2. Further, µ(T−1(Ω)) = µ(Ω) = 1 and µ(T−1(∅)) = µ(∅) = 0. We

can also easily show that T is ergodic. Notice that the only subsets of Ω that map to themselves

are the empty set and Ω, itself. In the other cases, we have that T ({x1}) = {x2} and vice-versa.
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Anyway, since µ(∅) = 0 and µ(Ω) = 1, then we know that T is ergodic. What about T 2, i.e., the

transformation T 2(x) = T (T (x)) for all x ∈ Ω? Notice that T 2 must be the identity transformation

because T (T (x1)) = T (x2) = x1 and T (T (x2)) = T (x1) = x2. However, this means that every subset

of Ω is mapped to itself! Consequently, although T 2({x1}) = {x1}, we have that µ({x1}) = 1/2,

which is not equal to either 0 or 1. Thus, T 2 is measure-preserving, but not ergodic!

Now, these last considerations have been very simplistic. However, we can actually use the

previous example to motivate the Ergodic Theorem! Specifically, notice that if we iterate our trans-

formation T , we manage to cover both of our sample points x1, x2 ∈ Ω. In other words, what we mean

is if we start with either x1 or x2, then T (x1) = x2, and T (T (x1)) = T 2(x1) = x1, and T 3(x1) = x2,

and so forth. Thus, we see that T samples the entire sample space Ω under iteration. What about

the transformation T 2? This function does not sample our entire sample space under iteration. Ex-

plicitly, (T 2)n(x1) = x1 and (T 2)n(x2) = x2, for all n ∈ lN . Thus, as we iterate T 2, we do not get to

all of the elements in Ω. Now, it is not coincidental that T has this sampling property and is ergodic,

while T 2 does not sample our space very well and is not ergodic. As we shall see in the next section,

ergodicity and sampling are intimately related. Indeed, it will be shown (albeit in a more formal

language) that ergodic maps T : Ω → Ω have the property that the orbit of any “initial condition”

x0 ∈ Ω under T will sample the space Ω arbitrarily well. We will clarify what we mean by this in

the next section.

5.2 Birkhoff’s Ergodic Theorem

We will begin with a statement of Birkhoff’s Ergodic Theorem. Originally, this theorem, described

by Birkhoff in 1931, dealt with differential equations [Bi]. The theorem characterized the behavior

of trajectories described by the solutions to these differential equations. In our case, the trajectories

will be described by iterations of an ergodic transformation T . Like Birkhoff, we will be interested to

see what happens to random variables under these trajectories, or iterated transformations. Anyway,

the version of our theorem, as stated in Athreya’s book on page 274, goes as follows:

Theorem 5.2.1. Let (Ω,F , µ) be a probability space, T : Ω → Ω be an ergodic transformation and

X ∈ L(Ω,F , µ). Consider the sequence of functions (fn) ( where fn : Ω → l̄R for each n ∈ lN ) given

by

fn(x) =
1

n

n−1∑
j=0

X(T j(x))
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for all n ∈ lN . Then, for each x ∈ Ω, the sequence of real numbers (fn(x)) converges to the expectation

of the random variable X, i.e. E(X). In other words, for our sequence of functions (fn),

fn(x) =
1

n

n−1∑
j=0

X(T j(x)) → E(X) ≡
∫

Ω

X dµ

with probability 1 (see Def. 4.2.5) and in L (see Def. 3.5.3) as n →∞. As a final clarification, here

we have a pointwise convergence of (fn) almost everywhere to a constant function that has the value

E(X) everywhere in Ω.

Now, let us discuss the elements of this theorem a little bit. First of all, we see that we are

dealing with some random variable X. Recall that a random variable is just a real-valued measurable

function on our outcome space Ω. However, we specify in the theorem that X ∈ L(Ω,F , µ). Recall

from Def. 3.3.6, that this implies that the integral of |X| over Ω is finite. Indeed, this is what allows

us to take the integral of X to get an expected value. This brings us to one of the quantities we are

looking at in this theorem. Notice that on the right-hand-side of the equality in the theorem we just

have E(X). This is just the average value of X over every point in Ω. In physics, this kind of average

is called a phase space average. Indeed, a phase space in physics is just the set Ω of all the possible

states of a particular system. Then, if we examine the value of some variable X at each point in the

phase space, the average value that this variable X takes on is just the average E(X).

We also have in the statement of Birkhoff’s ergodic theorem an interesting term denoted by

1

n

n−1∑
j=0

X(T j(x)).

Now, notice that for each n ∈ lN , the quantity above is a function from Ω to the real numbers. This

is the case because we know that X : Ω → lR is a random variable. Moreover, each fn must be a

random variable as well, since it is a finite sum of random variables (measurable functions). Now,

look at the argument of our function X: T j(x). We know that our transformation T maps points in

Ω to other points in Ω. Thus, X(T j(x)) represents the value of X at a point in the orbit of x under

T . Indeed, we are looking at the behavior of the random variable X as we allow our system to be

transformed under the iteration of the ergodic T transformation. So, now that we have worked out

X(T j(x)), consider the sum. We are basically saying, okay, take a point x ∈ Ω, and compute the

value of X at x, T (x), and so forth. Then, add up the values of X at these points, i. e. perform the

sum:
∑n−1

j=0 X(T j(x)). Finally, divide this sum by the total number of iterations performed. This
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is what gives us the factor of 1/n. Thus, what we are doing here is computing a time average of

X, where “time” is represented by the number of times we iterate the map T . Now that we have

described the two important terms of the theorem, let us really see what this Ergodic Theorem is

saying.

In broad terms, the theorem is saying that the time average of X converges to the phase space

average as n →∞. So, basically, if we iterate our transformation T at some x ∈ Ω, then the average

we compute for the variable X over the points in the orbit of x under T will approach the expected

value of the random variable! Finally, it is important to note that the function 1
n

∑n−1
j=0 X(T j(x))

converges to E(X) at all points x ∈ Ω. Therefore, the nice property of our time average is independent

of our starting position x ∈ Ω. So, now that we’ve tried to state the idea behind the theorem in

many ways, consider Fig. 9 that tries to illustrate this concept.

Figure 9: This is an illustration of what the Ergodic Theorem means, conceptually. The top half of

the figure just lists the relevant mathematical terms in the theorem. The bottom half are a graphical

representation of the procedure for computing the terms in the top half. The dotted arrows connect

the mathematical terms to their corresponding concepts. Note that, in this figure, the blobs represent

the space Ω.
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After this explanation, we will proceed down the road to actually proving this theorem. The first

step will be to show an important lemma. The statement and proof of the lemma is given on page

274 in Athreya’s book. We will follow the proof given on that page.

Lemma 5.2.2. (Maximal ergodic inequality) Let T be a measure preserving transformation on

(Ω,F , µ). Next, suppose that we have an integral random variable X ∈ L(Ω,F , µ). Let us now

construct a sequence of functions S0, S1, . . . in the following way. Suppose that S0(x) = 0 for all

x ∈ Ω. Next, suppose that Sn(x) =
∑n−1

j=0 X(T j(x)) for all n ∈ lN . Finally, consider another se-

quence of functions M0,M1, . . . where Mn(x) = max{Sj(x) : 0 ≤ j ≤ n}. Then, we have that for

each n ∈ lN ,

E(X(x)I{y∈Ω : Mn(y)>0}(x)) ≥ 0.

Proof. Let n ∈ lN . If Mn(x) ≤ 0 for all x ∈ Ω, then from the definition of a characteristic function,

I{y∈Ω:Mn(y)>0}(x) = 0 for all x ∈ Ω, and the theorem trivially follows. Thus, suppose that this is

not the case and consider some point x ∈ Ω such that Mn(x) > 0. Anyway, since we defined our

functions Mn such that they are the maximum value of the functions Sj for all 0 ≤ j ≤ n (at any

particular x ∈ Ω), then we know that Mn(x) ≥ Sj(x) for all 1 ≤ j ≤ n. Further, since this inequality

is true for any x ∈ Ω, and T (x) ∈ Ω, Mn(T (x)) ≥ Sj(T (x)), as well. Therefore, adding the value of

the random variable at x ∈ Ω to both sides of the inequality yields

X(x) + Mn(T (x)) ≥ X(x) + Sj(T (x)) = Sj+1(x),

for all 0 ≤ j ≤ n, where the last equality follows from the definition of the Sj’s. We now have that

X(x) ≥ Sj+1(x) − Mn(T (x)) for all 0 ≤ j ≤ n. We can now reindex our counter j and conclude

that X(x) ≥ Si − Mn(T (x)) for all 1 ≤ i ≤ n. Therefore, by the definition of the maximum,

X(x) ≥ max{Sj(x) : 1 ≤ j ≤ n} − Mn(T (x)). Also, notice that we have specifically defined

S0(y) = 0 for all y ∈ Ω. So, S0(T (x)) = 0. Since our functions Mn are defined as the maximum

values of all the functions Sj, including S0, then we know that 0 ∈ {Sj(x) : 0 ≤ j ≤ n} and so

Mn(T (x)) ≥ 0.

Next, since Mn(x) > 0, then we know that we do not need to include the S0(x) = 0 element when

computing Mn(x). Therefore, Mn(x) = max{Sj(x) : 1 ≤ j ≤ n}. So, recall that we just showed

that X(x) ≥ max{Sj(x) : 1 ≤ j ≤ n} −Mn(T (x)). We now have that X(x) ≥ Mn(x) −Mn(T (x))

for all x such that Mn(x) > 0. We also know that Mn(x) is just a maximum value of functions that

are summations of the integrable functions X. Therefore, by the properties of the integral, since
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X ∈ L(Ω,F , µ), Mn ∈ L(Ω,F , µ), as well. This means that we can happily take its expectation

value. So, using the inequalities we have proven above, we find that

E[X(x)I{y∈Ω : Mn(y)>0}(x)] ≥ E[(Mn(x)−Mn(T (x)))I{y∈Ω : Mn(y)>0}(x)]

≥ E[Mn(x)−Mn(T (x))I{y∈Ω : Mn(y)>0}(x)]

≥ E[Mn(x)−Mn(T (x))I{y∈Ω : Mn(y)≥0}(x)]

= E(Mn(x)−Mn(T (x)))

= 0

To be a little more specific, the first line of the inequalities follows from the fact that X(x) ≥
Mn(x) −Mn(T (x)) for all x such that Mn(x) > 0 (what we just showed). The second line follows

because the indicator function forces our integrand to be non-zero only in the places where Mn(x) > 0.

Hence, when we allow the term Mn(x)I{y∈Ω : Mn(y)>0}(x) to become just Mn(x) in the integrand, we can

only be contributing terms that are less than or equal to zero. Consequently, we have the inequality

in the second line. The third inequality comes from the fact that Mn(T (x)) ≥ 0. Thus, since the set

{y ∈ Ω : Mn(y) > 0} ⊆ {y ∈ Ω : Mn(y) ≥ 0}, then we know that changing the indicator function

as shown in the third inequality can only make the integral smaller because we are subtracting the

product of the positive functions Mn(T (x)))I{y∈Ω : Mn(y)≥0}. The equality in the fourth line simply

follows from the fact that Mn(x) ≥ 0 for all x ∈ Ω. Again, this is true because we always include

S0(x) = 0 when taking that maximum in the definition of Mn(x). Finally, the very last equality

follows from the fact that T is measure preserving. Indeed, since the measure is not changing the

probability structure of our space Ω, then the expectation of any random variable X defined on Ω is

the same as the expectation of a variable on T (Ω). We are now done with the proof.

We may now finally move on to the proof of Birkhoff’s Ergodic Theorem. It is outlined on page

275 in Athreya’s book.

Proof. We will assume that our expected value E(X) is equal to zero. This can be done without

a loss of generality because we know that E(X) is some finite number due to our assumption that

X ∈ L(Ω,F , µ). Therefore, we can arbitrarily change the value of E(X) by shifting our random

variable function by any α ∈ lR. In other words, we can always just think about X ′(x) = X(x) + α.

So, since shifts like this do not change our arguments, we can simply say that E(X) = 0 to make

the notation a little easier. Anyway, let’s begin. We again want to consider summations of our

random variable functions. So, just as in Lem. 5.2.2, let us define Sn(x) =
∑n−1

j=0 X(T j(x)) for each
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n ≥ 1 and for all x ∈ Ω. Also, S0(x) = 0 for all x ∈ Ω. Now, we will also consider the function

Z(x) ≡ lim supn→∞ Sn(x)/n. Notice that the function Z(x) is just the supremum limit of the sequence

of functions (fn) in the statement of the ergodic theorem. Anyway, let us fix an arbitrary tolerance

ε > 0 and look at the set Aε ≡ {x ∈ Ω : Z(x) > ε}. So, what we are doing here is looking at

the set of all sample points in our sample space that are initial conditions that yield time averages

(the Z(x)’s) that are “ε-far away” from our expected value E(X) = 0. Anyway, we want to show

that µ(Aε) = 0. In other words, we want to show that the set of all such initial conditions has a

measure zero. Indeed, we want to make sure that almost every initial condition converges yields a

time average of X that converges to the expected value. Now, it is important to note here that Aε

is T -invariant. In other words, Aε = T−1(Aε). We will show this now.

(⊆): Suppose that y ∈ Aε. To show that y ∈ T−1(Aε), we just have to prove that T (y) ∈ Aε. So,

y ∈ Aε means that Z(y) > ε. Therefore, lim supn→∞ Sn(y)/n > ε. However, we know that Sn(y) =∑n−1
j=0 X(T j(y)) for all n ≥ 1. Therefore, Sn(T (y)) =

∑n−1
j=0 X(T j+1(y)) = Sn+1(y)−S0(y) = Sn+1(y).

Moreover, Sn+1(y) = Sn(y) + X(T n(y)). We may now reason that

lim sup
n→∞

Sn(T (y))

n
= lim sup

n→∞

(
Sn(y)

n
+

X(T n(y))

n

)
= lim sup

n→∞

Sn(y)

n
> ε.

The last equality follows from the fact that X(T n(y)) must be bounded because we know that

X ∈ L(Ω,F , µ), and certainly we cannot get finite integrals of unbounded functions. Anyway,
X(T n(y))

n
→ 0 as n →∞. We have now shown that T (y) ∈ Aε.

(⊇): Suppose that y ∈ T−1(Aε). This means that T (y) ∈ Aε. We just have to show that y ∈ Aε.

Again, T (y) ∈ Aε means that lim supn→∞ Sn(T (y))/n > ε. However, as we saw before, this lim sup

is just equal to lim supn→∞ Sn(y)/n. Thus, y ∈ Aε, as well.

We have now shown that T−1(Aε) = Aε. Of course, in the hypothesis of our theorem, we assumed

that T is ergodic. Thus, we know that either µ(Aε) = 1 or µ(Aε) = 0. Since we want to show

the latter condition, we will assume that µ(Aε) = 1 and look for a contradiction. Now, we will

define another random variable Y (x) = X(x)−ε. Similarly to the Lem. 5.2.2, we define the functions

Mn,Y (x) ≡ max{Sj,Y (x) : 0 ≤ j ≤ n}, where we now have S0,Y (x) ≡ 0 and Sj,Y (x) ≡ ∑j−1
i=0 Y (T k(x))

for all j ∈ lN . These sequences of functions are identical to the ones in the conditions for Lem. 5.2.2,

so we conclude by that lemma that

E(Y (x)I{y∈Ω : Mn,Y (y)>0}(x)) ≥ 0.

From the definition of our functions Mn,Y , if we look at the sets Bn ≡ {x ∈ Ω : Mn,Y (y) > 0} =
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{x ∈ Ω : sup1≤j≤n{1
j
Sj,Y (x)} > 0}, we find that Bn ↑ B ≡ {x ∈ Ω : sup1≤j≤∞{1

j
Sj,Y (x)} > 0}.

We see that we have an ↑ symbol here because Bn ⊆ Bn+1 by definition since each time we increase

our index n, we add one more element to the supremum we are computing in the definition of Bn.

Thus, whatever elements x ∈ Ω were in Bn, we must have the same elements in Bn+1, since our

supremum value can only increase. In other words, once sup1≤j≤n{1
j
Sj,Y (x)} > 0 for some x ∈ Bn,

then certainly sup1≤j≤n+1{1
j
Sj,Y (x)} > 0 for that same x. So, x ∈ Bn+1. Then, we can always take

the countable union of these sets to get some limiting set B. This is what we mean by the statement

Bn ↑ B. Now let us consider some z ∈ Aε. This means that Z(z) > ε. However, from our definition

of Y , 1
j
Sj,Y (x) = 1

j
Sj(x)− ε for j ≥ 1. Therefore,

Z(z) = lim sup
n→∞

(
Sn(z)

n

)
= lim sup

n→∞

(
1

n
Sj,Y (z) + ε

)
> ε ⇒ lim sup

n→∞

(
1

n
Sj,Y (z)

)
> 0.

We now conclude that sup1≥j<∞
1
j
Sj,Y (z) > 0 and so z ∈ B. Consequently, Aε ⊂ B. However, we

assumed at the beginning that µ(Aε) = 1. Hence, µ(B) = 1, as well. Finally, since X is integrable,

|Y | = |X − ε| ≤ |X| + ε is integrable, as well. Thus, we can construct a sequence of measurable

functions by looking at Y IBn . Then, since Bn ↑ B, we certainly have the case that the sequence of

functions (Y IBn) converges pointwise to (Y IB) Furthermore,
∫
Ω

Y IB dµ =
∫

Ω
Y dµ because µ(B) = 1

and so B is differs from Ω by a set of measure 0 (i. e. µ(Ω \ B) = 0). This means that Y IB = Y

almost everywhere in Ω, and so our integral values are the same. Anyway, since we also have the

bound |Y IBn | ≤ |Y | ≤ |X| + ε, and |X| + ε is certainly integrable, then we can use Lebesgue’s

dominated convergence theorem to conclude that

E(Y IBn) =

∫

Ω

Y IBn dµ −→
∫

Ω

Y IB dµ = E(Y IB) = E(Y ) as n →∞.

However, this is a contradiction because we have just shown that E(Y IB) = E(Y I{y∈Ω : Mn,Y (y)>0}) =

E(Y ) = −ε < 0. Thus, we are contradicting the result we got from Lem. 5.2.2. Anyway, we now

know that µ(Aε) = 0. We see that this must be the case since having µ(Aε) = 0 prevents us from

inferring that µ(B) = 1 and reaching a contradiction. Indeed, Lem. 5.2.2 necessitates the result that

µ(Aε) = 0. To finish our argument, notice that AC
ε = {x ∈ Ω : Z(x) ≤ ε}. Also, we necessarily have

that µ(AC
ε ) = 1 since µ(Aε) = 0. However, µ(Aε) = 0 is true for every ε > 0 because our original

ε > 0 was arbitrary. It follows that our condition Z(x) ≤ ε in the definition of AC
ε becomes just

Z(x) ≤ 0 from elementary real analysis considerations. Therefore, given our definition of Z, we have

just shown that

µ

({
x ∈ Ω : lim sup

n→∞

Sn(x)

n
≤ 0

})
= 1.
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We can go through a completely parallel argument for the random variable −X. In this case, all of

the inequalities become flipped and we have lim inf’s instead of lim sup’s. Therefore, by the symmetry

of the argument above, we also see that

µ

({
x ∈ Ω : lim inf

n→∞
Sn(x)

n
≥ 0

})
= 1.

However, we know that for any given sequence of real numbers (an), lim inf an ≤ lim sup an. Further,

we have just shown that 0 ≤ lim inf Sn(x)
n

and lim sup Sn(x)
n

≤ 0 for almost every x ∈ Ω. So, the

supremum limit and infimum limit have now been squeezed together to the point where they both

must equal zero (almost everywhere)! This means that our sequence converges! Indeed, we have that

µ

({
x ∈ Ω : lim

n→∞
Sn(x)

n
= 0 = E(X)

})
= 1.

We have now shown the first part of the theorem, since Sn(x)/n is just a short-hand notation for

our time average. Therefore, we have shown that as n → ∞, the probability that our time average

is equal to the phase space average (which we set to zero in the proof) goes to one! This is precisely

the definition of convergence with probability 1. This is great, since we are almost done.

The last bit of the proof simply deals with convergence of the time average to the expected

value in L. To remind ourselves of what this means, recall Def. 3.5.3. So, we just want to

show that the following sequence of integrals (which is just a sequence of real numbers) converges:∫
Ω
| 1
n

∑n−1
j=1 X(T j(x))| dµ → 0 = E(X) as n → ∞. In order to do this, we can split up our random

variable X into its positive, X+, and negative, X−, parts. Then, we can make the exact same ar-

guments we made above for X to show that the time averages of X+ and X− converge to E(X+)

and E(X−), respectively, with probability 1. However, consider our time average of either X±.

We know that it is written as 1
n

∑n−1
i=0 X±(T i(x)) for any initial point x ∈ Ω. Since T is measure

preserving,
∫
Ω

X±(T i(x)) dµ =
∫
Ω

X±(x) dµ for all i ∈ lN . Therefore, the integral of our time aver-

age is just
∫

Ω
1
n

∑n−1
i=0 X±(T i(x)) dµ = 1

n

∑n−1
i=0

∫
Ω

X±(x) dµ =
∫
Ω

X±(x) dµ = E(X±). Clearly this

must be true for all n ∈ lN . Anyway, notice that we now have two sequences ( 1
n

∑n−1
i=0 X+(T i(x)))

and ( 1
n

∑n−1
i=0 X−(T i(x))) of nonnegative (since X− and X+ are defined as nonnegative) measurable

functions that converge pointwise to E(X+(x)) and E(X−(x)), respectively. We also found that∫
Ω

1
n

∑n−1
i=0 X±(T i(x)) dµ → ∫

Ω
E(X±) dµ = E(X±). Thus, we have all the necessary conditions to

apply Scheffe’s Theorem (Thm. 3.4.7). Applying it we get that

∫

Ω

∣∣∣∣∣
1

n

n−1∑
i=0

X±(T i(x))− E(X±(x))

∣∣∣∣∣ dµ → 0
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as n →∞. Indeed, since we have now shown that this convergence in L(Ω,F , µ) is valid for the two

parts X+ and X−, since X = X+ −X−, we conclude that as n →∞

lim
n→∞

∫

Ω

∣∣∣∣∣
1

n

n−1∑
i=0

X(T i(x))− E(X)

∣∣∣∣∣ dµ → 0.

We have now shown the whole theorem! This last bit is just the definition of convergence in

L(Ω,F , µ).

5.3 Conclusions

The groundwork for ergodic theory is now complete. We are ready to tackle further interesting proper-

ties of measure-preserving transformations on measure spaces, such as mixing and entropy. Walter’s

book [Wa] provides an advanced introduction to these topics. However, for now, we will be best

served by pausing and reflecting on the importance of what we have already established. Birkhoff’s

ergodic theorem is a uniquely powerful result that has far-reaching implications. To conclude our

discussion, we will go over three areas which have been influenced by this theorem.

First, from the point of view of probability theory, the ergodic theorem is a powerful strong law

of large numbers (SLLN). Specifically, the most common form of the SLLN may be phrased as a

theorem (pg. 240 [Ath]):

Theorem 5.3.1. Let (Xn) be a sequence of independent and identically distributed random variables

such that E(X4
1 ) < ∞. Then,

X̄n ≡ X1 + X2 + . . . + Xn

n
→ E(X1)

with probability 1 as n → ∞. The convergence above is a pointwise convergence of the sequence of

functions X̄n to the constant function E(X1).

Notice that the language of the SLLN theorem given above is very similar to the language of Birkhoff’s

ergodic theorem. In both theorems, a sequence of finite sums of random variables converges with

probability 1 to the expectation of the random variable. In the SLLN case, we have many independent,

identically distributed random variables. In the ergodic theorem, we are concerned with a single

random variable whose domain Ω is being acted on by the ergodic transformation T . Thus, although
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neither theorem implies the other directly, we see that the ergodic theorem has the advantage of not

requiring independence or identical distributions. This is why we may refer to the latter theorem as

an especially strong law of large numbers.

A second field that has been impacted by the ergodic theorem is number theory. Specifically, one

is able to prove “Borel’s Theorem on Normal Numbers” as an almost direct corollary of the ergodic

theorem (pg. 35 in [Wa]). This is a fascinating result that states that for almost every x ∈ [0, 1), the

frequency of 1’s (and 0’s) in the binary expansion of x is 1/2! This means that except for some subset

of measure zero, all the real numbers in the interval [0, 1) have approximately the same number of

zeros and ones in their binary expansions! Although we will not go through the proof of this result,

we will present the arguments in very broad terms. The basic idea is that one can construct an

ergodic map T (x) = 2x mod 1 where T : [0, 1) → [0, 1) (see the example of the measure-preserving

transformation on [0, 1] in Sec. 5.1 for the explicit definition of T ). This map shifts the binary

expansion of any given element in [0, 1) by one number. In other words, if our binary expansion of

some x ∈ [0, 1) is x = 1/2 + 0/4 + 1/8 + 1/16 + 0/32 . . ., then T (x) = 0/2 + 1/4 + 1/8 + 0/16 + . . ..

Next, one constructs the random variable X(x) = I[1/2,1)(x) on [0, 1). Notice that X(x) is 1 when

the leading term in the binary expansion of x is 1, and 0 otherwise. Therefore, by combining this

random variable (measurable function) with the shifting property of the T transformation, we find

that
∑n−1

i=0 X(T i(x)) represents the number of 1’s in the first n digits of the binary expansion! An

application of the ergodic theorem yields the remarkable result. For a more explicit proof, we refer

the reader to pages 35 and 36 in [Bu].

The third and final area which we will mention is statistical mechanics. The relationship between

this field and ergodic theory cannot be overstated since the concept of ergodicity itself originated in

this field. Indeed, the word “ergodic” was first coined by one of the founders of statistical mechanics,

Ludwig Boltzmann. It comes from the Greek word “ergon”, meaning work, and “odos”, meaning

path. So, the start of ergodic theory began with Boltzmann’s hypothesis that the orbit of a trans-

formation T on a phase space Ω (a set of all possible states of a system) would yield the entire phase

space (pg. 1,2 in [Wa]).

In statistical mechanics, the transformation T represents the evolution of a system through its

possible states. It is, in a sense, a process. For example, if the system is at a point x in its phase space

at some time t0, then Tt(x) may represent the state of the system at time t0 + t. Anyway, Boltzmann

expected that the time and phase space averages would be the same for these physical systems

(the two averages discussed in the Sec. 5.2). Such a condition is valuable in statistical mechanics
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because one expects that a physical system will sample all of the states available to it. This is in

fact the pillar on which most of statistical mechanics is built. Of course, we now know that such an

assumption is justified by Birkhoff’s ergodic theorem only for specific types of transformations which

we call ergodic. Physicists in modern times always have to consider that ergodicity is not a trivial

condition satisfied by most physical processes, but rather a deep mathematical property of special

transformations (processes) on measure spaces (states of a system) with far reaching consequences.
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[As] Asplund, E. and Bungart, L. (1966), A First Course in Integration, Holt, Rinehart, and Winston,

New York

[Ath] Athreya, K. B. and Lahiri, S. N. (2006), Measure Theory and Probability Theory, Springer,

New York.

[Bi] Birkhoff, G. D. (1931), ‘Proof of a Recurrence Theorem for Strongly Transitive Systems’ and

‘Proof of the Ergodic Theorem’, Proc. of the Nat. Acad. of Sciences 17(12), 650-660

[Bo] Bogachev, V. I. (2000), Measure Theory, Springer, New York

[Bu] Burk, F. (1998), Lebesgue Measure and Integration: An Introduction, John Wiley & Sons, New

York

[Sc] Schumacher, C. S. (2007), Closer and Closer: Introducing Real Analysis, Jones & Bartlett Pub.,

Sudbury, Massachusetts

[Wa] Walters, P. (1982), An Introduction to Ergodic Theory, Springer-Verlag, New York

[Wh] Wheeden, R. L. and Zygmund, A. (1977), Measure and Integral: An Introduction to Real

Analysis, Marcel Dekker, New York

[Wi] Image provided by the Wikipedia article: “Cantor set” (http://en.wikipedia.org/wiki/Cantorset,

page last modified on October 27, 2007)

63


