1. Solve for y: $2y^2 - 3y - 2 = 0$

Solution: $2y^2 - 3y - 2 = (2y + 1)(y - 2)$, so for $2y^2 - 3y - 2$ to equal 0, it must be the case that $2y + 1 = 0$ or $y - 2 = 0$. In the former case, $y = -1/2$ and in the latter case, $y = 2$.

2. Solve for x: $\sqrt{6x + 7} = x + 2$

Solution: We’ll begin by squaring both sides of the equation: $6x + 7 = (x + 2)^2$. Now let’s expand the right side: $6x + 7 = x^2 + 4x + 4$. Moving all terms to the right side, we obtain $0 = x^2 - 2x - 3$, which we can again solve by factoring. $x^2 - 2x - 3 = (x - 3)(x + 1)$. Following the same reasoning as in the first problem, we see that $x = 3$ or $x = -1$.

(Note that a quick check of both solutions by plugging in the respective numbers shows that both are valid. Sometimes this is not the case when one squares a square root, so it’s something to watch out for!)

3. Solve for x: $-5 < \frac{1}{2}(3x + 1) \leq 7$

Solution: We begin by multiplying both inequalities through by 2. This is allowed and does not change the sign since $2 > 0$. $-10 < 3x + 1 \leq 14$. We proceed by subtracting 1 from all three terms. (This is always allowed.) $-11 < 3x \leq 13$. Finally, dividing by 3, we see that $\frac{-11}{3} < x \leq \frac{13}{3}$.

4. Solve for x: $|2x + 3| < 13$

Solution: This is an abbreviation for $-13 < 2x + 3 < 13$. Now we can proceed as in the previous problem: $-16 < 2x < 10$, so $-8 < x < 5$.

5. Which of the following are graphs of functions?

Solution: The graphs in Figures I and III are functions, since they pass the vertical line test. (In figures II and IV, it is possible to draw a vertical line which intersects the graph twice.)
6. Match each equation with its graph:

(a) \(y = -2x^2 + 3x + 1 \)

Solution: Figure II (It is the only parabolic-looking graph.)

(b) \(y = \frac{1}{2}e^{-x} - 1 \)

Solution: Figure III (As \(x \) gets large, \(e^{-x} \) is near 0, so the graph should approach \(y = -1 \).)

(c) \(y = \log_5 x \)

Solution: Figure IV (Note particularly that \(\log_5 1 = 0 \).)

(d) \(y = 1 - \sin x \)

Solution: Figure I (This one should have been pretty obvious.)

7. Let \(f(x) = 5x^2 + 4x \). Evaluate each of the following:

(a) \(f(0) \)

Solution: \(f(0) = 5 \cdot 0 + 4 \cdot 0 = 0 \)

(b) \(f(3) \)

Solution: \(f(3) = 5 \cdot 9 + 4 \cdot 3 = 45 + 12 = 57 \)

(c) \(f(-1) \)

Solution \(f(-1) = 5 \cdot 1 + 4 \cdot -1 = 5 - 4 = 1 \)

(d) \(f(t) \)

Solution: \(f(t) = 5t^2 + 4t \)

(e) \(f(t-1) \)

Solution: \(f(t-1) = 5(t-1)^2 + 4(t-1) = (5t^2 - 10t + 5) + 4t - 4 = 5t^2 - 6t + 1 \)

(f) \(\frac{f(a+h) - f(a)}{h} \)

Solution \(f(a+h) = 5(a+h)^2 + 4(a+h) = 5a^2 + 10ah + 5h^2 + 4a + 4h. \) And of course, \(f(a) = 5a^2 + 4a, \) so \(f(a+h) - f(a) = (5a^2 + 10ah + 5h^2 + 4a + 4h) - (5a^2 + 4a) = 10ah + 5h^2 + 4h. \) And finally, \(\frac{f(a+h) - f(a)}{h} = \frac{10ah + 5h^2 + 4h}{h} = 10a + 5h + 4. \)

8. Find the \(x \)- and \(y \)-intercepts of \(y = (x - 2)^2(x + 2)(x + 4). \)

Solution: To find the \(x \)-intercepts, we set \(y = 0. \) \(0 = (x - 2)^2(x + 2)(x + 4). \)

For that product to be 0, we need at least one of the factors to be 0, so \(x - 2 = 0, \) \(x + 2 = 0, \) or \(x + 4 = 0. \) Thus, the \(x \)-intercepts of the graph are \(x = 2, \) \(x = -2, \) and \(x = -4. \)

Finding the \(y \)-intercepts is easier. We set \(x = 0 \) and see that \(y = (-2)^2(2)(4) = 32. \)
9. Factor $x^3 + 4x^2 - 12x$ as completely as possible.

Solution: $x^3 + 4x^2 - 12x = x(x^2 + 4x - 12) = x(x + 6)(x - 2)$.

10. Let A be the point $(-2, 1)$, let B be the point $(2, 3)$, and let C be the point $(3, 1)$. First plot these points and draw the triangle ABC. Then use the distance formula to find the three sides of the right triangle ABC. Finally, verify the Pythagorean Theorem for this triangle.

Solution: I’ll leave the diagramming out, but the calculations are as follows:

$|AB| = \sqrt{(2 - (-2))^2 + (3 - 1)^2} = \sqrt{16 + 4} = \sqrt{20} = 2\sqrt{5}$

$|AC| = \sqrt{(3 - (-2))^2 + (1 - 1)^2} = \sqrt{25} = 5$

$|BC| = \sqrt{(3 - 2)^2 + (1 - 3)^2} = \sqrt{1 + 4} = \sqrt{5}$

Finally, we check the Pythagorean Theorem: $(2\sqrt{5})^2 + (\sqrt{5})^2 = 20 + 5 = 25 = 5^2$.

11. Find the vertical and horizontal asymptotes of $y = \frac{3x + 5}{x - 6}$.

Solution: Some basic knowledge of asymptotes tells us that $y = \frac{3x + 5}{x - 6}$ will have a vertical asymptote when the denominator is 0, so $x = 6$ is a vertical asymptote of this function. As for the horizontal asymptote, you can either use algebra ($\frac{3x + 5}{x - 6} = \frac{3x - 18 + 23}{x - 6} = \frac{3x - 18}{x - 6} + \frac{23}{x - 6} = 3 + \frac{23}{x - 6}$) or just some common sense (“As x gets very large, the $+5$ and -6 will be negligible compared to the size of x.”) to see that as x gets very large (positive or negative), y will be close to 3, so $y = 3$ is the horizontal asymptote of the graph.

12. Solve for x: $e^{2x} = 8$

Solution: We begin by taking the natural logarithm of both sides. $\ln e^{2x} = \ln 8$.

But of course, $\ln(e^{\text{whatever}}) = \text{whatever}$, so $2x = \ln 8$ and $x = (\ln 8)/2$.

13. Solve for x: $2^{3x-4} = 5$

Solution: We proceed in the same way as above, but instead of using the natural logarithm (base e), we use the logarithm base 2. $\log_2(2^{3x-4}) = \log_2 5$, so as before $3x - 4 = \log_2 5$. At this point, it is very easy to see that $x = (4 + \log_2 5)/3$.

14. Solve for x: $\log_2(3x - 4) = 5$

Solution: Just as $\log_2(2^{\text{whatever}}) = \text{whatever}$, it’s also the case that $2^{\log_2(\text{whatever})} = \text{whatever}$, so we can do something similar to what we did above. $2^{\log_2(3x-4)} = 2^5$, so $3x - 4 = 32$, and so $3x = 36$ and $x = 12$.

Page 3
15. Solve for \(x \): \(\ln x + \ln(x + 3) = 1 \)

Solution: It’s a property of all logarithmic functions that \(\log A + \log B = \log AB \) and we can use that here: \(\ln x + \ln(x + 3) = \ln(x(x + 3)) = 1 \). Now we can do what we did the preceding problem: \(e^{\ln(x(x+3))} = e^1 \), so \(x(x+3) = e \).

Finally, we solve this like any quadratic problem. (Remember: \(e \) is just a number.) \(x^2 + 3x - e = 0 \), so we can use the quadratic formula: \(x = \frac{-3 \pm \sqrt{9 - (4(-e))}}{2} = \frac{-3 \pm \sqrt{9 + 4e}}{2} \). The last thing to note here is that we can’t take the logarithm of a negative number (remember the original statement of the problem!), so the answer is \(x = \frac{-3 + \sqrt{9 + 4e}}{2} \).

Whew!

16. Convert the radian angle measures \(\frac{5\pi}{4}, \frac{5\pi}{6}, \) and \(\frac{-5\pi}{2} \) to degree measures.

Solution: \(225^\circ, 150^\circ, \) and \(-450^\circ \).

17. Find the exact value of \(\tan(\frac{4\pi}{3}) + \cos(\frac{4\pi}{3}) \) without using a calculator.

Solution: \(\sqrt{3} - 1/2 \). How did we get there? Well, \(\frac{4\pi}{3} \) is \(240^\circ \), so if we draw a unit circle and a ray at \(240^\circ \), we see that we get a 30-60-90 triangle, with the long leg in the vertical and the short leg in the horizontal. Furthermore, both \(x \) and \(y \) are negative. That tells us that \(\sin(\frac{4\pi}{3}) = -\sqrt{3}/2 \) and \(\cos(\frac{4\pi}{3}) = -1/2 \). Since \(\tan \theta = \sin \theta / \cos \theta \), \(\tan(\frac{4\pi}{3}) = \sqrt{3} \).

18. Below are the graphs of the six basic trigonometric functions. Which graph represents which function?

Solution: I – sec \(x \); II – tan \(x \); III – cos \(x \); IV – csc \(x \); V – cot \(x \); VI – sin \(x \).

19. Let \(\theta \) be the angle between the \(x \)-axis and a segment joining the origin to \((-3, 4) \). Find \(\sin \theta \).

Solution: Since the length of the segment is 5 (remember 3-4-5 triangles?), it intersects the unit circle at \((-3/5, 4/5) \). Since the value of the sine is the value of the \(y \)-coordinate in unit-circle trigonometry, \(\sin \theta = 4/5 \).

20. Verify that \(\csc \theta - \cot \theta = \frac{\sin \theta}{1 + \cos \theta} \). (Hint: Write everything in terms of \(\sin x \) and \(\cos x \) first.)

Taking the hint, we start by writing: \(\frac{1}{\sin \theta} - \frac{\cos \theta}{\sin \theta} = \frac{\sin \theta}{\sin \theta} = \frac{1 - \cos \theta}{\sin \theta} \). Now we can cross-multiply to get rid of the fractions: \((1 - \cos \theta)(1 + \cos \theta) = (\sin \theta)^2 \). Now if we multiply out the left side, we get \(1 - \cos \theta + \cos \theta - (\cos \theta)^2 = 1 - (\cos \theta)^2 = (\sin \theta)^2 \), which is a variant on the basic trigonometric identity: \(1 = (\sin \theta)^2 + (\cos \theta)^2 \).