Instructions:

Work out as much of this exam as you can; don’t worry about time. Work carefully, writing out your work and stating your answers clearly, just as if this was an ordinary (not self-placement) exam. Do not look at the answers until you are finished. Do not use a calculator or other technological aid.

1. Solve for y: $2y^2 - 3y - 2 = 0$
2. Solve for x: $\sqrt{6x + 7} = x + 2$
3. Solve for x: $-5 < \frac{1}{2}(3x + 1) \leq 7$
4. Solve for x: $|2x + 3| < 13$
5. Which of the following are graphs of functions?

6. Let $f(x) = 5x^2 + 4x$. Evaluate each of the following:

 (a) $f(0)$; (b) $f(3)$; (c) $f(-1)$; (d) $f(t)$; (e) $f(t - 1)$; (f) $\frac{f(a + h) - f(a)}{h}$

7. Find the x- and y-intercepts of $y = (x - 2)^2(x + 2)(x + 4)$.

8. Factor $x^3 + 4x^2 - 12x$ as completely as possible.

9. Let A be the point $(-2, 1)$, let B be the point $(2, 3)$, and let C be the point $(3, 1)$. First plot these points and draw the triangle ABC. Then use the distance formula to find the lengths of the three sides of the right triangle ABC. Finally, verify that the Pythagorean Theorem works for this triangle.
10. Match each equation with its graph:
 (a) $y = -2x^2 + 3x + 1$; (b) $y = \frac{1}{2}e^{-x} - 1$; (c) $y = \log_5 x$; (d) $y = 1 - \sin x$

11. Find the vertical and horizontal asymptotes of $y = \frac{3x + 5}{x - 6}$.

12. Solve for x: $e^{2x} = 8$

13. Solve for x: $2^{3x-4} = 5$

14. Solve for x: $\log_2(3x - 4) = 5$

15. Solve for x: $\ln x + \ln(x + 3) = 1$

16. Convert the radian angle measures $\frac{5\pi}{4}$, $\frac{5\pi}{6}$, and $-\frac{5\pi}{2}$ to degree measures.

17. Find the exact value of $\tan(4\pi/3) + \cos(4\pi/3)$ without using a calculator.

18. Below are the graphs of the six basic trigonometric functions. Which graph represents which function?

19. Let θ be the angle between the x-axis and a segment joining the origin to $(-3, 4)$. Find $\sin \theta$.

20. Verify that $\csc \theta - \cot \theta = \frac{\sin \theta}{1 + \cos \theta}$. (Hint: Write everything in terms of $\sin \theta$ and $\cos \theta$ first.)